Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
2.3 Exponentialfunktion: Errechnen verschiedener gesuchter Anfangsgrößen, Matheübungen
- Lehrplan (im Aufbau) - 22 Aufgaben in 4 Levels
Abbruch - Keine Zugriffsberechtigung
Hilfe
Allgemeine Hilfe zu diesem Level
Beachte: Wenn eine Größe
um
20% abnimmt, dann besitzt sie nach der Abnahme 80% des Ursprünglichen Wertes, ist also 0,8 mal so groß wie vorher;
um
20% zunimmt, dann besitzt sie nach der Zunahme 120% des Ursprünglichen Wertes, ist also 1,2 mal so groß wie vorher.
Beispiel
Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
Beispielaufgabe
+Video
ansehen
Hilfe zum Thema
Funktionen mit der Gleichung f(x) = b · a
x
heißen
Exponentialfunktionen
. Dabei ist
a > 0 der Wachstumsfaktor und
b = f(0) der Anfangsbestand
Weitere Hilfethemen
FAQ zum Aufgabenbereich und zur Bedienung
Aufgabe
Aufgabe
1 von 4
in Level 2
Runde auf ganze Prozent.
Zwischenschritte aktiviert
Eine Population ist innerhalb von 7 Jahren um 50% angewachsen. Um wie viel Prozent wuchs sie jährlich?
Um ca. ▉ Prozent.
Schritt 1 von 4
Nach sieben Jahren ist sie
mal so groß wie davor.
Ergebnis prüfen
keine Berechtigung
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
α
β
γ
δ
ε
η
λ
μ
π
σ
φ
ω
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Lösung anzeigen
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt der Zwischenschritt als nicht gelöst und die Bewertung deiner Leistung für diese Aufgabe verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die
Beispiel-Aufgabe
zu diesem Aufgabentyp an.
Lösung anzeigen
Abbrechen
Stoff zum Thema (+Video)
Stoff zum Thema anzeigen
Was ist der allgemeine Term einer Exponentialfunktion und welche Bedeutung haben die Parameter?
#350
Funktionen mit der Gleichung f(x) = b · a
x
heißen
Exponentialfunktionen
. Dabei ist
a > 0 der Wachstumsfaktor und
b = f(0) der Anfangsbestand
Beispiel
Ein zu festem Jahreszinssatz angelegtes Kapital ist innerhalb von 10 Jahren auf 300% angewachsen. Wie hoch ist der Zinsatz?
Was bleibt beim exponentiellen Wachstum gleich und wie geht man bei typischen Fragestellungen vor?
#724
Exponentielles Wachstum:
Zunahme pro Zeitschritt ist - prozentual - immer gleich, d.h.
B(n + 1) = B(n) · k.
B(n) gesucht:
Den Bestand nach n Zeitschritten berechnet man mithilfe der Formel:
B(n) = B(0) · k
n
n gesucht:
Ist n gesucht, löst man die Formel nach n auf:
B(n) = B(0) · k
n
| : B(0)
B(n) / B(0) = k
n
| log
log( B(n) / B(0) ) = log( k
n
)
log( B(n) / B(0) ) = n · log( k ) | : log( k )
n = log( B(n) / B(0) ) / log( k )
B(0) gesucht:
Ist B(0) gesucht, löst man die Formel nach B(0) auf:
B(n) = B(0) · k
n
| : k
n
B(0) = B(n) / k
n
k gesucht:
Ist k gesucht, löst man die Formel nach k auf:
B(n) = B(0) · k
n
| : B(0)
B(n) / B(0) = k
n
Zuletzt zieht man noch die n-te Wurzel
Beispiel
Ein Guthaben von 5000 € wird mit 3,7% verzinst. Nach wie vielen Jahren ist es auf 8000 € angewachsen?
Nach ? Jahren beträgt das Guthaben 8000 €.
Titel
×
...
Schließen
Speichern
Abbrechen