Berechne. Vorsicht, nicht immer sind Potenzgesetze anwendbar!

  • 4
    1
    ·
    5
    2
    +
    5
    3
    =
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Potenzen mit gleicher Basis
Lernvideo

Potenzen mit gleicher Basis

Kanal: Mathegym
Potenzen mit gleichem Exponent
Lernvideo

Potenzen mit gleichem Exponent

Kanal: Mathegym
Potenz einer Potenz
Lernvideo

Potenz einer Potenz

Kanal: Mathegym

Was sind die fünf grundlegenden Potenzgesetze?
#539
Potenzgesetze:
  1. Potenzen mit gleicher Basis werden multipliziert, indem man die Exponenten addiert und die Basis beibehält.
    ap · aq = ap + q

  2. Potenzen mit gleicher Basis werden dividiert, indem man die Exponenten subtrahiert und die Basis beibehält.
    ap : aq = ap − q

  3. Potenzen mit gleichen Exponenten werden multipliziert, indem man die Basen multipliziert und den Exponenten beibehält.
    aq · bq = (a · b)q

  4. Potenzen mit gleichen Exponenten werden dividiert, indem man die Basen dividiert und den Exponenten beibehält.
    aq : bq = (a : b)q

  5. Potenzen werden potenziert, indem man die Exponenten multipliziert.
    (ap)q = ap·q
Beispiel 1
Beispiel zu Potenzgesetz 1:
 
    
 
3
2
·
3
5
=
3
2
+
5
=
3
7
=
3
·
3
·
3
·
3
·
3
·
3
·
3
7mal
=
2187
Beispiel zu Potenzgesetz 2:
 
    
 
5
6
:
5
5
=
5
6
5
=
5
1
=
5
Beispiel zu Potenzgesetz 3:
 
    
 
5
2
·
7
2
=
5
·
7
2
=
35
2
=
1225
Beispiel zu Potenzgesetz 4:
 
    
 
15
2
:
5
2
=
15
:
5
2
=
3
2
=
9
Beispiel zu Potenzgesetz 5:
 
    
 
2
3
4
=
2
3
·
4
=
2
12
=
4096
Beispiel 2
Fasse zusammen:
35c
7
6d
2
:
7
 
c
2
d
5
Was bedeutet eine Potenz mit negativer Hochzahl, wie zum Beispiel 2^-3?
#540
Ist der Exponent negativ, so bildet man den Kehrwert der Basis und macht den Exponenten positiv.
Beispiel
5
2
=
5
1
2
=
1
5
2
=
1
25