Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
2.5 Allgemeine quadratische Funktionen und Gleichungen - Scheitelform, Parameterbestimmung, Punktprobe, Matheübungen
Quadratische Funktionen und Gleichungen - Lehrwerk Lambacher Schweizer (5.-13. Klasse) - 28 Aufgaben in 6 Levels
Abbruch - Keine Zugriffsberechtigung
Hilfe
Beispiel
Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
Beispielaufgabe ansehen
Hilfe zum Thema
Weiß man, dass eine Parabel die x-Achse an den Stellen x
1
und x
2
schneidet, so kann man ihren Scheitel S leicht bestimmen:
x
S
= (x
1
+ x
2
) : 2
Begründung: x
S
(also die x-Koordinate des Scheitels) liegt aus Symmetriegründen genau in der Mitte des Intervalls [x
1
; x
2
]
y
S
= p(x
S
)
d.h. die y-Koordinate erhält man durch Einsetzen von x
S
in den Funktionsterm der Parabel
Weitere Hilfethemen
FAQ zum Aufgabenbereich und zur Bedienung
Aufgabe
Aufgabe
1 von 4
in Level 2
Gegeben ist die Gleichung einer Parabel, die die x-Achse an zwei Stellen x
1
und x
2
schneidet. Ermittle die Scheitelkoordinaten. Evtl. auftretende Brüche in der Form a/b angeben.
Zwischenschritte aktivieren
y
=
−
2x
2
+
2x
+
1
1
2
x
1
=
−
0,5
x
2
=
1,5
S
|
Ergebnis prüfen
keine Berechtigung
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
α
β
γ
δ
ε
η
λ
μ
π
σ
φ
ω
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Lösung anzeigen
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die
Beispiel-Aufgabe
zu diesem Aufgabentyp an.
Lösung anzeigen
Abbrechen
Stoff zum Thema (+Video)
Stoff zum Thema anzeigen
Lernvideo
Quadratische Gleichungen
Kanal: Mathegym
Was lässt sich über die Graphen der Funktionen folgender Gleichungen jeweils aussagen: y = x², y = (x + 2)², y = x² + 2, y = (x - 1)² + 3?
#230
y = x²:
Normalparabel mit Scheitel S im Ursprung
y = (x + 2)²:
Um 2 nach links (bei "x − 2" nach rechts) verschobene Normalparabel, also Scheitel S(-2|0)
y = x² + 2:
Um 2 nach oben (bei "x − 2" nach unten) verschobene Normalparabel, also Scheitel S(0|2)
y = (x − 1)² + 3:
Um 1 nach rechts und um 3 nach oben verschobene Normalparabel, also Scheitel S(1|3)
Diese Zusammenhänge gelten auch, wenn ein Faktor vor x² bzw. (...)² steht.
Beispiel
Gib die Koordinaten des Scheitels an.
y
=
3
·
x
+
5
2
Wie bestimmt man den Scheitel einer Parabel aus ihren Schnittpunkten mit der x-Achse?
#436
Weiß man, dass eine Parabel die x-Achse an den Stellen x
1
und x
2
schneidet, so kann man ihren Scheitel S leicht bestimmen:
x
S
= (x
1
+ x
2
) : 2
Begründung: x
S
(also die x-Koordinate des Scheitels) liegt aus Symmetriegründen genau in der Mitte des Intervalls [x
1
; x
2
]
y
S
= p(x
S
)
d.h. die y-Koordinate erhält man durch Einsetzen von x
S
in den Funktionsterm der Parabel
Beispiel
Die Parabel mit der Gleichung
y
=
−
3x
2
−
2x
+
1
schneidet die x-Achse an den Stellen
x
1
=
−
1
und
x
2
=
1
3
. Bestimme die Koordinaten des Scheitelpunkts.
Wie lautet die Gleichung einer Parabel in Scheitelform, wenn die allgemeine Form y = ax² + bx + c und der Scheitel S(s ; t) gegeben sind?
#432
Eine Parabel mit der Gleichung
y = ax² + bx + c
(
Allgemeine Form
) und dem Scheitel S(s ; t) lässt sich auch durch die Gleichung
y = a (x − s)² + t
(
Scheitelpunktform
) ausdrücken.
Beispiel
Lass den zugehörigen Graphen von einer Software zeichnen und lies schließlich die Scheitelform der zugehörigen Parabel ab.
y
=
−
0,2x
2
−
x
+
3,25
In Scheitelform:
y
=
?
Wie beeinflussen die Parameter a, x
S
und y
S
die Form und Lage einer Parabel mit der Gleichung y = a⋅(x - x
S
)² + y
S
?
#913
Durch die Gleichung
y = a⋅(x - x
S
)² + y
S
(a≠0)
ist eine Parabel mit den Scheitelkoordinaten
x
S
und
y
S
gegeben, die gegenüber der Normalparabel mit der Gleichung
y = x²
nach unten geöffnet ist, falls a negativ ist und
evtl. gestreckt (falls |a|>1) bzw. gestaucht (falls |a|<1) ist.
Beispiel
Abgebildet ist die Parabel mit der Gleichung
y
=
a
·
x
−
x
S
2
+
y
S
Bestimme a,
x
S
und
y
S
.
Wie überprüft man, ob ein Punkt bezüglich eines Funktionsgraphen auf, über oder unter diesem liegt?
#234
Um zu überprüfen, ob ein Punkt (a|b) über, auf oder unter dem Graphen einer Funktion liegt, setzt man a in den Funktionsterm f(x) ein. Der Punkt liegt
über dem Graphen, wenn b > f(a)
auf dem Graphen, wenn b = f(a)
unter dem Graphen, wenn b < f(a)
Beispiel
f:
y
=
−
1
2
x
2
−
x
+
8
;
A
−
5
|
−
1
;
B
−
2
|
9
;
C
1
|
6,5
Gib jeweils an, ob der der Punkt über, auf oder unter der Parabel liegt.
Titel
×
...
Schließen
Speichern
Abbrechen