Hilfe
  • Exponentielles Wachstum:
    Zunahme pro Zeitschritt ist - prozentual - immer gleich, d.h.
    B(n + 1) = B(n) · k.

    • B(n) gesucht:
    • Den Bestand nach n Zeitschritten berechnet man mithilfe der Formel:
      B(n) = B(0) · kn

    • n gesucht:
    • Ist n gesucht, löst man die Formel nach n auf:
      B(n) = B(0) · kn | : B(0)
      B(n) / B(0) = kn | log
      log( B(n) / B(0) ) = log( kn)
      log( B(n) / B(0) ) = n · log( k ) | : log( k )
      n = log( B(n) / B(0) ) / log( k )

    • B(0) gesucht:
    • Ist B(0) gesucht, löst man die Formel nach B(0) auf:
      B(n) = B(0) · kn | : kn
      B(0) = B(n) / kn

    • k gesucht:
      Ist k gesucht, löst man die Formel nach k auf:
      B(n) = B(0) · kn | : B(0)
      B(n) / B(0) = kn
      Zuletzt zieht man noch die n-te Wurzel

Hinweis: Auf dieser Stufe findest du vermischte Übungen zu den verschiedenen Aufgabentypen des exponentiellen Wachstums.

  • Zu seinem 30. Geburtstag am 1. Januar legt Herr Sparsam 5500 € zu einem Zinssatz von 2,3% an.
    Auf welchen Betrag wird das Kapital bis zu seinem Renteneintritt mit 65 Jahren anwachsen?
    Kapital auf dem Sparbuch an Herrn Sparsams 65. Geburtstag:
     
    Euro
     
     
    Cent
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie hängen Wachstumsrate und Wachstumsfaktor beim exponentiellen Wachstum zusammen?
#345
Wachstumsrate = Wachstumsfaktor a − 1
  • Nimmt ein Bestand pro Zeitschritt um 20% (= Rate) zu, so hat er sich auf 120% (= a) des ursprünglichen Bestands vergößert.
  • Nimmt ein Bestand pro Zeitschritt um 20% (Rate) ab, so hat er sich auf 80% (= a) des ursprünglichen Bestands verringert.
Ansonsten bedenke, dass 80% = 0,8 und 120% = 1,2.
Beispiel
Wie lautet der Wachstumsfaktor (bezogen auf das angegebene Zeitintervall)
  1. bei einer monatlichen Zunahme um die Hälfte
  2. bei einer jährlichen Abnahme um ein Viertel
  3. bei einem täglichen Rückgang um 1,5%
Was bleibt beim exponentiellen Wachstum gleich und wie geht man bei typischen Fragestellungen vor?
#724
Exponentielles Wachstum:
Zunahme pro Zeitschritt ist - prozentual - immer gleich, d.h.
B(n + 1) = B(n) · k.

  • B(n) gesucht:
  • Den Bestand nach n Zeitschritten berechnet man mithilfe der Formel:
    B(n) = B(0) · kn

  • n gesucht:
  • Ist n gesucht, löst man die Formel nach n auf:
    B(n) = B(0) · kn | : B(0)
    B(n) / B(0) = kn | log
    log( B(n) / B(0) ) = log( kn)
    log( B(n) / B(0) ) = n · log( k ) | : log( k )
    n = log( B(n) / B(0) ) / log( k )

  • B(0) gesucht:
  • Ist B(0) gesucht, löst man die Formel nach B(0) auf:
    B(n) = B(0) · kn | : kn
    B(0) = B(n) / kn

  • k gesucht:
    Ist k gesucht, löst man die Formel nach k auf:
    B(n) = B(0) · kn | : B(0)
    B(n) / B(0) = kn
    Zuletzt zieht man noch die n-te Wurzel
Beispiel 1
Ein Kapital von 2000 € vermehrt sich auf einem Sparkonto pro Jahr um 0,1%.
Nach 8 Jahren beträgt das Kapital auf dem Konto:
?
 
Euro
 
?
 
Cent
Beispiel 2
Ein Guthaben von 5000 € wird mit 3,7% verzinst. Nach wie vielen Jahren ist es auf 8000 € angewachsen?
Nach ? Jahren beträgt das Guthaben 8000 €.