Hilfe
  • Allgemeine Hilfe zu diesem Level
    Denke an die quadratische Ergänzung.
  • Beispiel
    Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
  • Hilfe zum Thema
    Man unterscheidet bei einer Parabel zwischen
    • Allgemeiner Form   y = ax² + bx + c   ⇒ Ablesen des Schnittpunkts mit der y-Achse (0;c)
    • Scheitelpunktform   y = a (x - xS)² + yS   ⇒ Ablesen des Scheitels S

    Von der allgemeinen Form ausgehend erhält man die Scheitelpunktform mithilfe der quadratischen Ergänzung.

  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 4 in Level 3
  • Berechne die Scheitelkoordinaten der folgenden Parabel. Die Koeffizienten sollen hier nicht gerundet werden. Evtl. auftretende Brüche in der Form "a/b" bzw. "-a/b" angeben.
  • Gegeben ist die Parabel mit der Gleichung
    y
    =
    2x
    2
    +
    8x
    +
    6
    Die Parabel hat den Scheitel:
    S
     
     
    |
     
  • keine Berechtigung
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die Beispiel-Aufgabe zu diesem Aufgabentyp an.
Stoff zum Thema (+Video)
Welche Formen einer Parabelgleichung gibt es und wie wandelt man diese um?
#236
Man unterscheidet bei einer Parabel zwischen
  • Allgemeiner Form   y = ax² + bx + c   ⇒ Ablesen des Schnittpunkts mit der y-Achse (0;c)
  • Scheitelpunktform   y = a (x - xS)² + yS   ⇒ Ablesen des Scheitels S

Von der allgemeinen Form ausgehend erhält man die Scheitelpunktform mithilfe der quadratischen Ergänzung.

Beispiel 1
Gegeben ist die Parabel mit der Gleichung
y
=
1
3
 
x
2
6x
+
30
Die Parabel hat den Scheitel:
S
 
?
 
|
 
?
Beispiel 2
Bringe 
y
=
1
4
 
x
2
2x
+
1
 in Scheitelpunktform und gib den Scheitel an.