Hilfe
  • Beispiel
    Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
  • Hilfe zum Thema
    Eine Kugel mit dem Radius r besitzt
    • das Volumen V = 4/3 · r³ · π
    • den Oberflächeninhalt O = 4 · r² · π
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 4 in Level 2
  • Die gefärbte Figur wird um die Achse a gedreht. Berechne die Oberfläche des Rotationskörpers . Ergebnis(se) mit 1 Dezimalstelle(n) Genauigkeit angeben - geringe Abweichungen vom richtigen Ergebnis werden toleriert!
  • graphik
    O ≈
     
     ▉ 
     
    cm
    2
    Schritt 1 von 3
    Ansatz zur Berechnung der Oberfläche. Gib passende Faktoren ein, z.B. "1" bzw. "2" wenn die Fläche einfach bzw. doppelt vorkommt, "0" wenn sie gar nicht vorkommt, "-1" wenn sie abzuziehen ist.
    O
    ges
    =
    ·
    Deckfläche Zylinder
    +
    ·
    Mantelfläche Zylinder
    +
    ·
    Oberfläche Kugel
  • keine Berechtigung
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt der Zwischenschritt als nicht gelöst und die Bewertung deiner Leistung für diese Aufgabe verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die Beispiel-Aufgabe zu diesem Aufgabentyp an.
Stoff zum Thema (+Video)
Wie berechnet man das Volumen und die Oberfläche einer Kugel?
#502
Eine Kugel mit dem Radius r besitzt
  • das Volumen V = 4/3 · r³ · π
  • den Oberflächeninhalt O = 4 · r² · π
Beispiel
Die gefärbte Figur wird um die Achse a gedreht. Berechne Volumen und Oberfläche des Rotationskörpers.
graphik
Wie berechnet man die Volumina von Prismen, Pyramiden, Zylindern und Kegeln?
#770
Volumenformeln im Überblick:
  • Quader und Prisma: V = G · h
  • Pyramide: V = ⅓ G · h
  • Zylinder: V = r² π · h
  • Kegel: V = ⅓ r² π · h