Hilfe
  • Wahrscheinlichkeiten der Art P( X ≤ k ) einer binomial verteilten Zufallsgröße X können mit unterschiedlichen Hilfsmitteln (WTR, CAS/MMS, GTR, Tafelwerk) bestimmt werden. Man beachte, welche Hilfsmittel für die Prüfung zugelassen sind!

    Um P( Z > k ) zu bestimmen, ermittelt man erst den Wahrscheinlichkeitswert für das Gegenereignis "Z ≤ k" und zieht diesen dann von 1 ab.

TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Berechne mit Hilfe des GTR.

  • Wie oft musst du eine Münze mindestens werfen, um mit einer Wahrscheinlichkeit von mindestens 95% mindestens 4-mal "Zahl" zu werfen?
    Antwort:
     
    mindestens
     
    -mal
    Hinweis: du benötigst für diesen Level einen GTR. Ohne diesen sind die Aufgabe nur sehr schwer lösbar.
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie berechnet man die Wahrscheinlichkeit P(X=r) in einer Bernoulli-Kette der Länge n?
#703

Bernoulli Formel:

Für eine Bernoulli-Kette der Länge n lässt sich die Wahrscheinlichkeit P(X=r), dass die Zufallsgröße X genau r Treffer (Trefferwahrscheinlichkeit p) hat mit der Bernoulli-Formel berechnen:

Bn,p = P(X=r) = (nr) · pr · (1 − p)n-r
Beispiel
Wie oft muss ein Würfel mindestens geworfen werden, um mit einer Wahrscheinlichkeit von mindestens 80% mindestens eine 1 zu würfeln?
Wie bestimmt man Wahrscheinlichkeiten der Form P(Z≤k) und P(Z>k)?
#509

Wahrscheinlichkeiten der Art P( X ≤ k ) einer binomial verteilten Zufallsgröße X können mit unterschiedlichen Hilfsmitteln (WTR, CAS/MMS, GTR, Tafelwerk) bestimmt werden. Man beachte, welche Hilfsmittel für die Prüfung zugelassen sind!

Um P( Z > k ) zu bestimmen, ermittelt man erst den Wahrscheinlichkeitswert für das Gegenereignis "Z ≤ k" und zieht diesen dann von 1 ab.

Beispiel 1
Eine Urne enthält eine weiße und 7 schwarze Kugeln. Wie oft musst du mindestens eine Kugel (mit Zurücklegen) ziehen, um mit einer Wahrscheinlichkeit von mindestens 80% mindestens 2-mal "weiß" zu ziehen?
Antwort: mindestens ?-mal
Beispiel 2
Die Verarbeitung von Bauteilen wird als "sehr gut" bezeichnet, wenn man in einer Stichprobe von 100 Stück mit einer Mindestwahrscheinlichkeit von 96% maximal 3 defekte Bauteile findet. Wie hoch darf der Anteil an defekten Bauteilen maximal sein?
Antwort:
 
? % (gerundet auf eine Dezimale)
Was sind die Sigmaregeln und unter welcher Bedingung sind sie zuverlässig?
#706

Sigmaregeln zu gegebenen Umgebungen um den Erwartungswert:

  • ca. 68,3% der Werte von X liegen im Intervall [μ-σ;μ+σ].
  • ca. 95,5% der Werte von X liegen im Intervall [μ-2σ;μ+2σ].
  • ca. 99,7% der Werte von X liegen im Intervall [μ-3σ;μ+3σ].

Sigmaregeln zu ganzzahligen Sicherheitswahrscheinlichkeiten:

  • 90% der Werte von X liegen im Intervall [μ-1,64σ;μ+1,64σ].
  • 95% der Werte von X liegen im Intervall [μ-1,96σ;μ+1,96σ].
  • 99% der Werte von X liegen im Intervall [μ-2,58σ;μ+2,58σ].

Wenn die Laplace-Bedingung σ > 3 erfüllt ist, erhält man mit den Sigmaregeln zuverlässige Werte.

Beispiel
Eine Münze wird 50-mal geworfen. Die Zufallsgröße X stehe für die Anzahl der geworfenen "Zahlen".
Gib ein Intervall an, in dem sicher 90% der Werte von X liegen.
Beispiel
P
14
0,78
 
X > k
 
>
 
0,95
Für welche Werte von k gilt diese Ungleichung?