Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
Brüche - darstellen und ordnen, Matheübungen
Veranschaulichung von Brüchen an der Zahlengeraden; der Größe nach ordnen - Lehrplan G9 (5.-12. Klasse)
Aufgaben
Aufgaben rechnen
Stoff
Stoff ansehen (+Video)
Hilfe
Beispielaufgabe
+Video
Haben zwei Brüche denselben Nenner, ist der Bruch größer, der den größeren Zähler besitzt.
Haben zwei Brüche denselben Zähler, ist der Bruch größer, der den kleineren Nenner besitzt.
Beträgt der Zähler mehr als die Hälfte des Nenners, so ist der Bruch größer als 1/2.
Beträgt der Zähler weniger als die Hälfte des Nenners, so ist der Bruch kleiner als 1/2
Es gilt 1/2 < 2/3 < 3/4 < 4/5 u.s.w. (bei diesen Brüchen ist der Zähler um eins kleiner als der Nenner).
TIPP
Beispiel-Aufgabe:
Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.
Betrachte die Zahlen (die nicht nach Größe sortiert wurden) und setze jeweils das richtige Zeichen ("<", "=" oder ">") dazwischen.
2
3
2
4
2
4
6
11
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Stoff zum Thema (+Video)
Wann ist der Wert eines Bruchs ganzzahlig, kleiner als 1 oder größer als 1?
#23
Der Wert eines Bruchs z/n mit Zähler z und Nenner n ist
ganzzahlig, wenn z ein Vielfaches von n ist wie z.B. bei 12/4; der Wert ist dann gleich dem Ergebnis der Division, hier also 12 : 4 = 3
kleiner als 1, wenn der Zähler kleiner als der Nenner ist wie z.B. bei 3/4
größer als 1, wenn der Zähler größer als der Nenner ist wie z.B. bei 7/2
Wie vergleicht man die Größe von Brüchen anhand einfacher Regeln?
#13
Haben zwei Brüche denselben Nenner, ist der Bruch größer, der den größeren Zähler besitzt.
Haben zwei Brüche denselben Zähler, ist der Bruch größer, der den kleineren Nenner besitzt.
Beträgt der Zähler mehr als die Hälfte des Nenners, so ist der Bruch größer als 1/2.
Beträgt der Zähler weniger als die Hälfte des Nenners, so ist der Bruch kleiner als 1/2
Es gilt 1/2 < 2/3 < 3/4 < 4/5 u.s.w. (bei diesen Brüchen ist der Zähler um eins kleiner als der Nenner).
Beispiel 1
Vergleiche hinsichtlich ihrer Größe:
5
31
und
7
31
7
4
und
7
3
7
8
und
8
9
6
11
und
3
7
3
20
und
2
15
Beispiel 2
Vergleiche hinsichtlich ihrer Größe:
4
3
11
und 3
17
10
Titel
×
...
Schließen
Speichern
Abbrechen