Hilfe
  • Jeder Punkt auf der Mittelsenkrechten einer Strecke hat zu beiden Endpunkten der Strecke dieselbe Entfernung. Daher gilt folgender Satz:

    Die drei Mittelsenkrechten eines jeden Dreiecks schneiden sich in einem Punkt. Dieser Punkt ist von allen drei Ecken gleich weit entfernt, ist also der Mittelpunkt des Umkreises.

TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.
TIPP GeoGebra: Für diese Aufgabe steht dir GeoGebra zur Verfügung. Damit kannst du Konstruktionen direkt am Bildschirm durchführen. Klicke unten rechts auf das orange GeoGebra-Symbol, um die Aufgabe mit Hilfe von GeoGebra zu bearbeiten.

Gegeben ist das Dreieck mit den Ecken A, B und C. Konstruiere den Mittelpunkt M des Umkreises und gib seine Koordinaten als Dezimalzahl an. Ergebnis(se) mit 1 Dezimalstelle(n) Genauigkeit angeben - geringe Abweichungen vom richtigen Ergebnis werden toleriert!

  • A
     
    5
     
    |
     
    1
    ;
    B
     
    2
     
    |
     
    4
    ;
    C
     
    4
     
    |
     
    2
    M
     
     
    |
     
    GeoGebra
    GeoGebra
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Für diese Aufgabe steht dir GeoGebra zur Verfügung. Damit kannst du Konstruktionen direkt am Bildschirm durchführen.
  • Zeichne das Dreieck mit den Eckpunkten A(-5|1), B(-2|-4), C(4|2) und konstruiere den Mittelpunkt des Umkreises.
  • Wenn du mit der Konstruktion fertig bist, scrolle zurück nach oben und gib bei der Aufgabe das passende Ergebnis ein.
Zum Ändern der Größe gestrichelte Linie ziehen
Wie konstruiert man den Umkreis eines Dreiecks?
#505
Jeder Punkt auf der Mittelsenkrechten einer Strecke hat zu beiden Endpunkten der Strecke dieselbe Entfernung. Daher gilt folgender Satz:

Die drei Mittelsenkrechten eines jeden Dreiecks schneiden sich in einem Punkt. Dieser Punkt ist von allen drei Ecken gleich weit entfernt, ist also der Mittelpunkt des Umkreises.

Beispiel
Gegeben ist das folgende Dreieck. Konstruiere den Umkreis.
graphik
Wie konstruiert man den Umkreis eines Dreiecks?
#506
Die Punkte der Winkelhalbierenden besitzen die Eigenschaft, dass sie zu beiden Schenkeln denselben Abstand haben. Daher gilt folgender Satz:

Die drei Winkelhalbierenden eines jeden Dreiecks schneiden sich in einem Punkt. Dieser Punkt hat von allen drei Seiten denselben Abstand, ist also der Mittelpunkt des Inkreises.

Beispiel
Gegeben ist das folgende Dreieck. Konstruiere den Inkreis.
graphik
Was sind Seitenhalbierende in einem Dreieck und wie werden sie definiert?
#801
Seitenhalbierende verbinden jeweils einen Eckpunkt des Dreiecks mit der Mitte der gegenüberliegenden Seite.
Was ist der Schwerpunkt eines Dreiecks und wo befindet er sich?
#800
Der Schwerpunkt eines Dreiecks ist der Punkt, in dem sich alle drei Seitenhalbierenden schneiden.