Wie entsteht der Graph von h aus dem Graphen von f?

  • f
     
    x
    =
    sin
    x
    1
    1
    h
     
    x
    =
    sin
    2x
    +
    1
    Verschiebung um
     
     
    nach
     
    und um
     
     
    nach
     
     
    ,
    dann
     
     
    in
     
    -Richtung
    mit Streckungsfaktor
     
    .
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie kann eine Funktion f(x) abgewandelt werden, um ihren Graphen Gf zu strecken, stauchen, verschieben oder zu spiegeln?
#488
h ( x ) = Gh geht aus Gf hervor durch
f ( x + a ) Verschiebung um |a| Einheiten nach rechts (a < 0) bzw. links (a > 0)
f ( x ) + a Verschiebung um |a| Einheiten nach oben (a > 0) bzw. unten (a < 0)
a · f ( x ), a > 0 Streckung (a > 1) bzw. Stauchung (a < 1) in y-Richtung
− f ( x ) Spiegelung an der x-Achse
f ( a · x ), a > 0 Streckung mit Faktor 1/a in x-Richtung
f ( −x ) Spiegelung an der y-Achse
Beispiel 1
Wie entsteht der Graph von h aus dem Graphen von f? Gib einen passenden Term für h an.
graphik
Beispiel 2
f
 
x
=
1
3
·
2
x
1,5
h
 
x
=
2
x
3
+
1
Welche Verschiebung(en)/Streckung(en)/Spiegelung(en) sind am Graphen von f durchzuführen, um den Graphen von h zu erhalten?
Beispiel
f
 
x
=
2
x
2
x
+
3
Gf wird nun an der x-Achse gespiegelt, in y-Richtung mit Faktor 1/2 gestaucht und um 1 Einheit nach links verschoben. Gib den zugehörigen Funktionsterm vereinfacht an.