Hilfe
  • Hilfe zum Thema
    Um zu überprüfen, ob ein Punkt P( x | y ) auf dem Graphen von f liegt, setzt man den x-Wert in den Funktionsterm ein und berechnet den Termwert. Ist das Ergebnis der y-Wert des Punktes, dann liegt der Punkt auf der Geraden.
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 5 in Level 1
  • Überprüfe, ob die Punkte auf dem Graphen der gegebenen Funktion liegen.
  • f
     
    x
    =
    x
    2
    3x
    P
     
    3
     
    |
     
    0
    Q
     
    4
     
    |
     
    1
     
    P liegt auf dem Graphen.
     
    Q liegt auf dem Graphen.
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die Hilfe zu dieser Aufgabe an.
Stoff zum Thema
Wie kann man feststellen, ob ein Punkt auf dem Graphen einer Funktion liegt?
#683
Um zu überprüfen, ob ein Punkt P( x | y ) auf dem Graphen von f liegt, setzt man den x-Wert in den Funktionsterm ein und berechnet den Termwert. Ist das Ergebnis der y-Wert des Punktes, dann liegt der Punkt auf der Geraden.
Wie erkennt man Achsen- und Punktsymmetrie bei Funktionen, insbesondere bei ganzrationalen Funktionen?
#758
  • Achsensymmetrie zur y-Achse:
  • Für alle x aus dem Definitionsbereich gilt:
    f(x) = f(-x)

  • Punktsymmetrie zum Ursprung:
  • Für alle x aus dem Definitionsbereich gilt:
    -f(x) = f(-x)

  • Spezialfall: ganzrationale Funktionen

  • f(x) = f(-x) gilt genau dann, wenn nur gerade Exponenten auftauchen.
    Also gilt:
    Hat eine ganzrationale Funktion nur x-Potenzen mit geraden Hochzahlen, so ist der Graph der Funktion achsensymmetrisch zur y-Achse.

    -f(x) = f(-x) gilt genau dann, wenn nur ungerade Exponenten auftauchen.
    Also gilt:
    Hat eine ganzrationale Funktion nur x-Potenzen mit ungeraden Hochzahlen, so ist der Graph der Funktion punktsymmetrisch zum Ursprung.

  • Hinweis:
  • Die einzige Funktion deren Graph sowohl achsensymmetrisch zur y-Achse also auch punktsymmetrisch zum Ursprung ist, ist f(x)=0.
Beispiel
Untersuche, ob der Graph der Funktion achsensymmetrisch zur y-Achse oder punktsymmetrisch zum Ursprung ist.
a) 
f
 
x
=
5x
2
x
2
+
2
b) 
f
 
x
=
5x
2
x
3
+
2x
c) 
f
 
x
=
5x
2
x
3
+
2
Was ist die Definitionsmenge einer Funktion?
#679
Die Menge aller Zahlen, die man in den Funktionsterm einer Funktion f einsetzen darf, heißt Definitionsmenge der Funktion f.
Wie bestimmt man die zweite Koordinate eines Punktes auf dem Graphen einer Funktion, wenn eine Koordinate bekannt ist?
#684
  • Wenn von einem Punkt auf dem Graphen nur die x-Koordinate bekannt ist, erhält man die y-Koordinate, indem man die x-Koordinate in den Funktionsterm einsetzt und den Wert des Funktionsterms berechnet. Das Ergebnis ist die y-Koordinate.
  • Wenn von einem Punkt auf dem Graphen nur die y-Koordinate bekannt ist, erhält man die x-Koordinate, indem man den Funktionsterm gleich der y-Koordinate setzt und die entstehende Gleichung nach x auflöst. Das Ergebnis ist die x-Koordinate.