Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
Eigenschaften von Funktionen, Matheübungen
Wiederholung anhand unterschiedlicher Funktionstypen: Bestimmung der Definitionsmenge, Symmetrie zum KOSY, Überprüfung, ob ein Punkt auf dem Graph liegt bzw. Bestimmung einzelner Koordinaten unter diesem Gesichtspunkt
Aufgaben
Aufgaben rechnen
Stoff
Stoff ansehen
Hilfe
Die Menge aller Zahlen, die man in den Funktionsterm einer Funktion f einsetzen darf, heißt
Definitionsmenge
der Funktion f.
Welche der Funktionen haben die angegebene Definitionsmenge? (Kreuze alle richtigen Antworten an.)
Definitionsmenge ID
f
=
IR
f(x)
=
x
f(x)
=
x
2
+
1
f(x)
=
100
+
10
·
x
f(x)
=
10
·
x
3
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Stoff zum Thema
Wie kann man feststellen, ob ein Punkt auf dem Graphen einer Funktion liegt?
#683
Um zu überprüfen, ob ein Punkt P( x | y ) auf dem Graphen von f liegt, setzt man den x-Wert in den Funktionsterm ein und berechnet den Termwert. Ist das Ergebnis der y-Wert des Punktes, dann liegt der Punkt auf der Geraden.
Wie erkennt man Achsen- und Punktsymmetrie bei Funktionen, insbesondere bei ganzrationalen Funktionen?
#758
Achsensymmetrie zur y-Achse:
Für alle x aus dem Definitionsbereich gilt:
f(x) = f(-x)
Punktsymmetrie zum Ursprung:
Für alle x aus dem Definitionsbereich gilt:
-f(x) = f(-x)
Spezialfall: ganzrationale Funktionen
f(x) = f(-x) gilt genau dann, wenn nur gerade Exponenten auftauchen.
Also gilt:
Hat eine ganzrationale Funktion nur x-Potenzen mit geraden Hochzahlen, so ist der Graph der Funktion achsensymmetrisch zur y-Achse.
-f(x) = f(-x) gilt genau dann, wenn nur ungerade Exponenten auftauchen.
Also gilt:
Hat eine ganzrationale Funktion nur x-Potenzen mit ungeraden Hochzahlen, so ist der Graph der Funktion punktsymmetrisch zum Ursprung.
Hinweis:
Die einzige Funktion deren Graph sowohl achsensymmetrisch zur y-Achse also auch punktsymmetrisch zum Ursprung ist, ist f(x)=0.
Beispiel
Untersuche, ob der Graph der Funktion achsensymmetrisch zur y-Achse oder punktsymmetrisch zum Ursprung ist.
a)
f
x
=
5x
2
x
2
+
2
b)
f
x
=
5x
2
x
3
+
2x
c)
f
x
=
5x
2
x
3
+
2
Wie bestimmt man die zweite Koordinate eines Punktes auf dem Graphen einer Funktion, wenn eine Koordinate bekannt ist?
#684
Wenn von einem Punkt auf dem Graphen nur die x-Koordinate bekannt ist, erhält man die y-Koordinate, indem man die x-Koordinate in den Funktionsterm einsetzt und den Wert des Funktionsterms berechnet. Das Ergebnis ist die y-Koordinate.
Wenn von einem Punkt auf dem Graphen nur die y-Koordinate bekannt ist, erhält man die x-Koordinate, indem man den Funktionsterm gleich der y-Koordinate setzt und die entstehende Gleichung nach x auflöst. Das Ergebnis ist die x-Koordinate.
Was ist die Definitionsmenge einer Funktion?
#679
Die Menge aller Zahlen, die man in den Funktionsterm einer Funktion f einsetzen darf, heißt
Definitionsmenge
der Funktion f.
Mathe-Aufgaben passend zu deinem Lehrplan
Wir zeigen dir exakt die Mathe-Übungen, die für deinen Lehrplan bzw. Bundesland vorgesehen sind. Wähle dazu bitte deinen Lehrplan.
Lehrplan wählen
Titel
×
...
Schließen
Speichern
Abbrechen