Wie lautet der passende Funktionsterm f(x)?

  • graphik
    e
    x
    2
         
     
    e
    2
    x
         
    e
    x
    2
    +
    1
         
    e
    2
    x
    +
    1
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie bewirkt man durch Änderung des Funktionsterms eine Spiegelung an der x-Achse oder y-Achse sowie eine Verschiebung in y-Richtung?
#697

Regeln zur Transformation von Graphen

Der Graf einer Funktion f wird
  • ... an der x-Achse gespiegelt: Minus vor den Term, d.h. g(x) = - f(x)
  • ... an der y-Achse gespiegelt : x durch (-x) ersetzen, d.h. g(x) = f(-x)
  • ... um b in y-Richtung verschoben: b zum Term addieren, d.h. g(x) = f(x) +b

Wie lautet die Gleichung der Asymptote bei Exponentialfunktionen vom Typ f(x) = a e^(kx) + b?
#704
Asymptote bei Exponentialfunktionen vom Typ f(x) = a ekx+b
  • Die Gleichung der Asymptote lautet y = b.
  • Wenn k positiv ist, schmiegt sich der Graph von f nach links an die Asymptote.
  • Wenn k negativ ist, schmiegt sich der Graph von f nach rechts an die Asymptote.
Was ist die Ableitung der natürlichen Exponentialfunktion?
#1208
Die Ableitung der natürlichen Exponentialfunktion ist (wieder) die natürliche Exponentialfunktion.
Was besagt die Produktregel in der Differentialrechnung?
#330
Produktregel:

Wenn f(x) = u(x)⋅v(x) dann ist f (x) = u(x)⋅v(x) + v(x)⋅u(x)

Wann und wie wird die Kettenregel in der Mathematik angewendet?
#329
Kettenregel:

Wenn f(x) = g( h(x) ), dann ist f (x) = g( h(x) )⋅h(x)

Wie funktioniert die Ableitung bei verketteten Funktionen und speziellen Funktionen?
#705
Spezialfall der Kettenregel:
Innere Funktion ist linear
f(x) = h(mx+c)
f´(x) = m · h´(mx+c)
Einige Ableitungen:
f(x) = ex, f´(x) = ex
f(x) = sin(x), f´(x) = cos(x)
f(x) = cos(x), f´(x) = -sin(x)
f(x) = xn, f´(x) = n xn-1
Wie verhalten sich die Funktionen x^n und e^x für x → ∞ und x → −∞?
#553
Die natürliche Exponentialfunktion verändert sich wesentlich schneller als jede Potenzfunktion. Daher gilt:
  • für x → −∞ strebt das Produkt aus ex und xn gegen 0
  • für x → ∞ strebt der Quotient aus xn und ex gegen 0
  • für x → ∞ strebt die Differenz aus ex und xn gegen ∞