Hilfe
  • Hilfe zum Thema
    Die natürliche Exponentialfunktion verändert sich wesentlich schneller als jede Potenzfunktion. Daher gilt:
    • für x → −∞ strebt das Produkt aus ex und xn gegen 0
    • für x → ∞ strebt der Quotient aus xn und ex gegen 0
    • für x → ∞ strebt die Differenz aus ex und xn gegen ∞
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 6 in Level 4
  • Bestimme. Aktiviere die Tastatur für Sonderzeichen, um "∞" eingeben zu können.
  • lim
    x → −∞
     
    2
    x
    2
    ·
    e
    x
    =
    lim
    x → ∞
     
    2
    x
    2
    ·
    e
    x
    =
  • keine Berechtigung
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die Hilfe zu dieser Aufgabe an.
Stoff zum Thema (+Video)
Wie verhalten sich die Funktionen x^n und e^x für x → ∞ und x → −∞?
#553
Die natürliche Exponentialfunktion verändert sich wesentlich schneller als jede Potenzfunktion. Daher gilt:
  • für x → −∞ strebt das Produkt aus ex und xn gegen 0
  • für x → ∞ strebt der Quotient aus xn und ex gegen 0
  • für x → ∞ strebt die Differenz aus ex und xn gegen ∞
Beispiel
lim
x → −∞
 
e
x
·
x
x
2
1
=
?
Wie verhalten sich der Quotient aus ln(x) und x^n für x → ∞ und das Produkt aus ln(x) und x^n für x → 0^+?
#554
Die ln-Funktion verändert sich wesentlich langsamer als jede Potenzfunktion. Daher gilt:
  • für x → ∞ strebt der Quotient aus ln(x) und xn gegen 0
  • für x → 0+ strebt das Produkt aus ln(x) und xn gegen 0
Beispiel
lim
x → ∞
    
ln
 
1
x
x
x
2
=
?
Wie verhält sich die natürliche Logarithmusfunktion ln(x) an den Rändern ihres Definitionsbereichs?
#552
ln(x) strebt
  • gegen −∞ für x → 0+
  • gegen ∞ für x → ∞
Beispiel
lim
x → −∞
    
ln
 
1
x
2
x
+
1
=
?
Wie verhält sich die Exponentialfunktion exp(x) für x gegen plus oder minus unendlich?
#551
ex strebt
  • gegen 0 für x → −∞
  • gegen ∞ für x → ∞
Beispiel
lim
x → 1+
 
e
x
2
1
x
=
?

Mathe-Aufgaben passend zu deinem Lehrplan

Aufgaben für deinen Lehrplan
Wir zeigen dir exakt die Mathe-Übungen, die für deinen Lehrplan bzw. Bundesland vorgesehen sind. Wähle dazu bitte deinen Lehrplan.
Lehrplan wählen