Hilfe
  • Hilfe speziell zu dieser Aufgabe
    Die Beträge der einzugebenden Zahlen ergeben in der Summe 162.
  • Für Potenzen mit einer negativen Zahl als Basis gilt folgende Regel:
    • Exponent gerade ⇒ Potenzwert positiv, wie z.B. bei (-5)4
    • Exponent ungerade ⇒ Potenzwert negativ, wie z.B. bei (-5)5
    Vorsicht: Wenn das Minuszeichen vor der Basis nicht eingeklammert ist, gilt die Basis als positiv (wegen der Regel "Potenz vor Strich". Darum ist z.B. -52 zu lesen als "Gegenzahl von 52" und hat damit einen negativen Wert.
TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu dieser Aufgabe" unterhalb der Aufgabe.

Berechne ohne Taschenrechner.

  • 3
    4
    =
    3
    4
    =
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Was sind die Quadratzahlen von 11 bis 20 und wie berechnet man sie?
#725
Potenzen mit der Hochzahl 2 heißen Quadratzahlen.

Beispiel
52 = 5 · 5 = 25

Die Quadratzahlen von 0 bis 20 sollte man auswendig wissen.
Wie schreibt man die Potenz 2^3 als Produkt und welcher Fehler ist dabei zu vermeiden?
#41
an = a · a · a ·... · a    [n Faktoren]

Vorsicht: a mal n niemals mit a hoch n verwechseln!!!

Beispiel: 103 = 10 · 10 · 10 =1000
10 · 3 = 30
Wie bestimmt man das Vorzeichen von Potenzen mit negativer Basis und begründe die Regel?
#730
Für Potenzen mit einer negativen Zahl als Basis gilt folgende Regel:
  • Exponent gerade ⇒ Potenzwert positiv, wie z.B. bei (-5)4
  • Exponent ungerade ⇒ Potenzwert negativ, wie z.B. bei (-5)5
Vorsicht: Wenn das Minuszeichen vor der Basis nicht eingeklammert ist, gilt die Basis als positiv (wegen der Regel "Potenz vor Strich". Darum ist z.B. -52 zu lesen als "Gegenzahl von 52" und hat damit einen negativen Wert.
Beispiel 1
?
4
=
16
?
3
=
125
Beispiel 2
2
2
=
?
2
2
=
?
2
3
=
?
2
3
=
?