Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
Gebrochen-rationale Funktionen - waagrechte und schräge Asymptoten, Matheübungen
Verhalten von f(x) für x→±∞; Bestimmung der Gleichung von waagrechten und schrägen Asymptoten - 18 Aufgaben in 3 Levels
Abbruch - Keine Zugriffsberechtigung
Hilfe
Beispiel
Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
Beispielaufgabe
+Video
ansehen
Hilfe zum Thema
Liegt eine gebrochen-rationale Funktion in der Form p(x)/q(x) vor, so kann man anhand des Zählergrads z (also die höchste x-Potenz im Zähler) und des Nennergrads n erkennen, ob der Graph eine waagrechte oder schräge Asymptote besitzt.
x-Achse als waagrechte Asymptote, falls z < n
waagrechte Asymptote, aber nicht die x-Achse, falls z = n; es genügt, die Leitkoeffizienten abzulesen und zu dividieren
schräge Asymptote, falls z = n + 1; die Gleichung lässt sich durch Polynomdivision ermitteln
weder waagrechte noch schräge Asymptote, falls z > n + 1
Liegt eine gebrochen-rationale Funktion in der Form mx+t+b(x) vor, wobei b(x) ein Bruchterm ist, der für betragsmäßige große x-Werte gegen 0 strebt, so ist y=mx+t die Gleichung der Asymptoten.
Weitere Hilfethemen
FAQ zum Aufgabenbereich und zur Bedienung
Aufgabe
Aufgabe
1 von 8
in Level 3
Gib die Gleichung der Asymptote in der Form y=m·x+t an, sofern es sich um eine waagrechte oder schräge Asymptote handelt. Gib evtl. auftretende Brüche in der Form "a/b" ein. Falls keine waagrechte oder schräge Asymptote vorliegt, gib "!" ein.
Zwischenschritte aktiviert
f
x
=
2x
+
1
x
−
x
2
Gleichung der Asymptote:
y
=
▉
Schritt 1 von 2
Was liegt vor?
eine waagrechte Asymptote
eine schräge Asymptote
weder noch
Ergebnis prüfen
keine Berechtigung
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
α
β
γ
δ
ε
η
λ
μ
π
σ
φ
ω
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Lösung anzeigen
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt der Zwischenschritt als nicht gelöst und die Bewertung deiner Leistung für diese Aufgabe verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die
Beispiel-Aufgabe
zu diesem Aufgabentyp an.
Lösung anzeigen
Abbrechen
Stoff zum Thema (+Video)
Stoff zum Thema anzeigen
Beispiel
f
x
=
3x
−
2
·
x
−
1
2x
Forme den Funktionsterm in eine Summe um und gib dann die Gleichung der schrägen Asymptote an.
Wie erkennt man bei gebrochen-rationalen Funktionen die Asymptoten des Graphen?
#326
Liegt eine gebrochen-rationale Funktion in der Form p(x)/q(x) vor, so kann man anhand des Zählergrads z (also die höchste x-Potenz im Zähler) und des Nennergrads n erkennen, ob der Graph eine waagrechte oder schräge Asymptote besitzt.
x-Achse als waagrechte Asymptote, falls z < n
waagrechte Asymptote, aber nicht die x-Achse, falls z = n; es genügt, die Leitkoeffizienten abzulesen und zu dividieren
schräge Asymptote, falls z = n + 1; die Gleichung lässt sich durch Polynomdivision ermitteln
weder waagrechte noch schräge Asymptote, falls z > n + 1
Liegt eine gebrochen-rationale Funktion in der Form mx+t+b(x) vor, wobei b(x) ein Bruchterm ist, der für betragsmäßige große x-Werte gegen 0 strebt, so ist y=mx+t die Gleichung der Asymptoten.
Beispiel
Liegen waagrechte/schräge Asymptoten vor? Wenn ja, bestimme deren Gleichung.
f
x
=
2x
2
3x
−
1
2
g
x
=
2x
2
·
1
−
x
3x
−
1
h
x
=
2x
3x
−
1
2
i
x
=
2x
2
3x
−
1
Titel
×
...
Schließen
Speichern
Abbrechen