Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
Geometrie - Mittelsenkrechte und Winkelhalbierende, Matheübungen
Mittelsenkrechte, Lot und Winkelhalbierende in Anwendungssituationen - Lehrplan für 5.-13. Klasse - 34 Aufgaben in 8 Levels
Abbruch - Keine Zugriffsberechtigung
Hilfe
Für diesen Aufgabentyp steht keine spezielle Hilfe zur Verfügung.
Weitere Hilfethemen
FAQ zum Aufgabenbereich und zur Bedienung
Aufgabe
Aufgabe
1 von 3
in Level 5
Konstruiere wie beschrieben, gib dann als Kontrolle die geforderte Länge an.
Zwischenschritte aktivieren
...ein Dreieck ABC mit b = 6,2 cm, α = 55°, Winkelhalbierende w
α
= 6 cm.
c ≈
7,4 cm
7,8 cm
8,2 cm
8,6 cm
Ergebnis prüfen
keine Berechtigung
GeoGebra
GeoGebra
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
α
β
γ
δ
ε
η
λ
μ
π
σ
φ
ω
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
GeoGebra-Editor
Für diese Aufgabe steht dir GeoGebra zur Verfügung. Damit kannst du Konstruktionen direkt am Bildschirm durchführen.
Geogebra-Editor anzeigen
Keine Zugriffsberechtigung
Geogebra steht nur angemeldeten Benutzern mit gültiger Lizenz zur Verfügung.
Lösung
Lösung anzeigen
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich.
Lösung anzeigen
Abbrechen
Stoff zum Thema
Stoff zum Thema anzeigen
Wie bestimmt man die Entfernung von einem Punkt zu einer Geraden und die Lage von Punkten mit gleicher oder bestimmter Entfernung zu geometrischen Objekten?
#824
Die kürzeste Entfernung eines Punktes P zu …
… einem anderen Punkt Q misst man entlang der Strecke von P nach Q.
… einer Geraden g misst man entlang des Lots zu g durch P.
Punkte mit gleicher Entfernung zu …
… zwei Punkten A und B liegen auf der Mittelsenkrechten von A und B.
… zwei sich schneidenden Geraden g und h liegen auf den beiden Winkelhalbierenden von g und h.
Punkte mit einem bestimmten Abstand d zu …
… einem Punkt A liegen auf dem Kreis um A mit Radius d.
… einer Geraden g liegen auf den beiden Parallelen zu g im Abstand d.
Wie unterscheiden sich gleichseitige und gleichschenklige Dreiecke und welche Eigenschaften sind "gleichseitig" äquivalent?
#179
Ein spezielles gleichschenkliges Dreieck ist das
gleichseitige
Dreieck: Bei ihm sind nicht nur zwei, sondern alle drei Seiten gleich lang.
Äquivalent zu
gleichseitig
sind folgende Aussagen:
alle Winkel sind gleichgroß (jeweils 60°)
achsensymmetrisch bzgl. dreier unterschiedlicher Achsen
Titel
×
...
Schließen
Speichern
Abbrechen