Hilfe
  • Eine Gerade g und eine Ebene E sind genau dann parallel, wenn der gegebene Richtungsvektor von g und der gegebene Normalenvektor von E senkrecht zueinander sind.

    Abgesehen davon kann man die gegenseitige Lage von E und g einschließlich des evtl. vorhandenen Schnittpunkts S wie folgt ermitteln:

    1. Setze g in E ein, d.h. ersetze x1, x2 und x3 in der E-Gleichung durch die entsprechenden Zeilen aus dem g-Gleichungssystem.
    2. Löse die entstehende Gleichung, wenn möglich, nach λ auf und setze das Ergebnis in die g-Gleichung für λ ein.
    3. Fasse zu einem Vektor zusammen, das Ergebnis entspricht S.
    Eine Schnittpunkt liegt nur dann vor, wenn sich der zweite Schritt "problemlos" durchführen lässt. Andernfalls sind g und E parallel, und zwar
    • echt parallel, wenn das Auflösen nach λ zu einer falschen Aussage wie z.B. "0 = 1" führt.
    • unecht parallel (E enthält g), wenn sich eine wahre Aussage wie z.B. "0 = 0" ergibt.
TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Lagebeziehung Ebene - Gerade.

  • E
    :
    2x
    1
    +
    5x
    2
    2x
    3
    7
    =
    0
    g
    :
    X
    =
    1
    2
    1
    +
    λ
     
    1
    4
    3
    E enthält g
    g ist echt parallel zu E
    E und g schneiden sich im Punkt
       
     
    S
     
    23
    24
     
    |
     
    2
    1
    6
     
    |
     
    9
    8
       
     
    S
     
    23
    24
     
    |
     
    1
    5
    6
     
    |
     
    9
    8
       
     
    S
     
    1
    1
    24
     
    |
     
    2
    1
    6
     
    |
     
    7
    8
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie bestimmt man die Lage einer Geraden zu einer Ebene und findet einen Schnittpunkt?
#613

Eine Gerade g und eine Ebene E sind genau dann parallel, wenn der gegebene Richtungsvektor von g und der gegebene Normalenvektor von E senkrecht zueinander sind.

Abgesehen davon kann man die gegenseitige Lage von E und g einschließlich des evtl. vorhandenen Schnittpunkts S wie folgt ermitteln:

  1. Setze g in E ein, d.h. ersetze x1, x2 und x3 in der E-Gleichung durch die entsprechenden Zeilen aus dem g-Gleichungssystem.
  2. Löse die entstehende Gleichung, wenn möglich, nach λ auf und setze das Ergebnis in die g-Gleichung für λ ein.
  3. Fasse zu einem Vektor zusammen, das Ergebnis entspricht S.
Eine Schnittpunkt liegt nur dann vor, wenn sich der zweite Schritt "problemlos" durchführen lässt. Andernfalls sind g und E parallel, und zwar
  • echt parallel, wenn das Auflösen nach λ zu einer falschen Aussage wie z.B. "0 = 1" führt.
  • unecht parallel (E enthält g), wenn sich eine wahre Aussage wie z.B. "0 = 0" ergibt.
Beispiel
E
:
x
1
+
5x
2
3x
3
+
9
=
0
g
:
X
=
1
2
0
+
λ
 
4
1
3
h
:
X
=
0
1
3
+
λ
 
2
3
1
Überprüfe die Lage der Ebene E zu den Geraden g und h und bestimme, falls vorhanden, den jeweiligen Schnittpunkt.
Wie konstruiert man die Lotgerade zu einer Ebene und die Lotebene zu einer Geraden durch einen Punkt?
#795
Für die Lotgerade g zu einer Ebene E durch einen Punkt P wählt man:
  • P als Aufhängepunkt und
  • den Normalenvektor von E als Richtungsvektor.
Für die Lotebene E zu einer Geraden g durch einen Punkt P wählt man:
  • P als Aufhängepunkt und
  • den Richtungsvektor von g als Normalenvektor.
Wie konstruiert man geometrische Objekte wie Lotgeraden, Lotebenen und führt Spiegelungen durch?
#1308
Für die Lotgerade g zu einer Ebene E durch einen Punkt P wählt man:
  • P als Aufhängepunkt und
  • den Normalenvektor von E als Richtungsvektor.
Für die Lotebene E zu einer Geraden g durch einen Punkt P wählt man:
  • P als Aufhängepunkt und
  • den Richtungsvektor von g als Normalenvektor.


Spiegelungen von geometrischen Objekten an anderen führt man durch wie folgt:
  • Spiegelung eines Punkts P an einer Geraden g: Bestimme die Lotebene E zu g durch P. Der Schnittpunkt S von E und g ist der Lotfußpunkt. Schließlich addiert man zum Ortsvektor von S den Verbindungsvektor von P und S.
  • Spiegelung eines Punkts P an einer Ebene E: Bestimme die Lotgerade g zu E durch P. Der Schnittpunkt S von E und g ist der Lotfußpunkt. Schließlich addiert man zum Ortsvektor von S den Verbindungsvektor von P und S.
  • Spiegelung einer Geraden g an einer Ebene E: Spiegle zwei Punkte von g an der Ebene E und stelle die Gerade durch die gespiegelten Punkte auf.
Wie führt man Spiegelungen geometrischer Objekte an Geraden und Ebenen durch?
#799
Spiegelungen von geometrischen Objekten an anderen führt man durch wie folgt:
  • Spiegelung eines Punkts P an einer Geraden g: Bestimme die Lotebene E zu g durch P. Der Schnittpunkt S von E und g ist der Lotfußpunkt. Schließlich addiert man zum Ortsvektor von S den Verbindungsvektor von P und S.
  • Spiegelung eines Punkts P an einer Ebene E: Bestimme die Lotgerade g zu E durch P. Der Schnittpunkt S von E und g ist der Lotfußpunkt. Schließlich addiert man zum Ortsvektor von S den Verbindungsvektor von P und S.
  • Spiegelung einer Geraden g an einer Ebene E: Spiegle zwei Punkte von g an der Ebene E und stelle die Gerade durch die gespiegelten Punkte auf.
  • Spiegelung einer Kugel an einer Ebene E: Spiegle den Mittelpunkt der Kugel an E und übernimm den Radius.

Mathe-Aufgaben passend zu deinem Lehrplan

Aufgaben für deinen Lehrplan
Wir zeigen dir exakt die Mathe-Übungen, die für deinen Lehrplan bzw. Bundesland vorgesehen sind. Wähle dazu bitte deinen Lehrplan.
Lehrplan wählen
Diese Aufgabentypen erwarten dich in den weiteren Übungslevel:
1. Level3 Aufgaben
Koordinatengeometrie im Raum - Lage Ebene/Gerade
2. Level4 Aufgaben
Koordinatengeometrie im Raum - Lage Ebene/Gerade
3. Level2 Aufgaben
Koordinatengeometrie im Raum - Lage Ebene/Gerade
4. Level2 Aufgaben
Koordinatengeometrie im Raum - Lage Ebene/Gerade
5. Level4 Aufgaben
Koordinatengeometrie im Raum - Lage Ebene/Gerade
6. Level3 Aufgaben
Koordinatengeometrie im Raum - Lage Ebene/Gerade

Dies ist nur eine kleine Auswahl. In unserem Aufgabenbereich findest du viele weitere Mathe-Übungen, die zu deiner Schule und deinem Lehrplan passen!

Zum Aufgabenbereich