Hilfe
TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Löse die Aufgabe Schritt für Schritt.

  • Gegeben ist die für x∈ℝ definierte Funktion f mit 
    f
     
    x
    =
    x
    1
    ·
    e
    0,5x
    .
    a) Wie verhält sich die Funktion im Unendlichen?
    b) Gib alle Nullstellen an.
    c) Bestimme alle relativen Hoch- und Tiefpunkte von 
    G
    f
    .
    d) Berechne f(-5), f(0) und f(2) und zeichne 
    G
    f
     auf der Grundlage aller bisherigen Ergebnisse im Intervall 
    5
     
     
    x
     
     
    2
    .
    e) Die Tangente an 
    G
    f
     an der Stelle 
    x
    =
    0
     bildet mit den Koordinatenachsen ein Dreieck. Bestimme dessen Fläche.
    Schritt 1/8
    Zu a)
    l i m
    x→∞
     
    f
     
    x
    =
    l i m
    x→−∞
     
    f
     
    x
    =
    Hinweis: klicke das Tastatur-Symbol an, um ∞ eingeben zu können.
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Beispiel
f
t
 
x
=
e
x
3
x
+
t
Bestimme den Parameterwert t so, dass die Tangente an 
G
t
 im Punkt (1 | ?) die Steigung 
1
4
 hat.
Beispiel 1
Gegeben ist die für x∈ℝ definierte Funktion f mit 
f
 
x
=
2
3x
·
e
x
.
a) Wie verhält sich die Funktion im Unendlichen?
b) Gib alle Nullstellen an.
c) Bestimme alle relativen Hoch- und Tiefpunkte.
d) Berechne f(-0,5), f(0) und f(4) und zeichne 
G
f
 auf der Grundlage aller bisherigen Ergebnisse im Intervall 
0,5
 
 
x
 
 
4
.
e) Die Tangente an 
G
f
 an der Stelle 
x
=
0
 bildet mit den Koordinatenachsen ein Dreieck. Bestimme dessen Fläche.
Beispiel 2
Gegeben ist die Schar von Funktionen 
f
k
 mit  
f
k
 
x
=
x
·
e
1
x
k
,  Definitionsmenge 
D
f
 
=
 
 und 
k
 
 
+
. Der Graph von 
f
k
 wird mit 
G
k
 bezeichnet.
a) Gib die Nullstellen und das Verhalten von 
f
k
 für x→±∞ an.
b) Bestimme Lage und Art des Extrempunkts von 
G
k
 in Abhängigkeit von k.
c) Begründe, dass die Extrempunkte aller Graphen der Schar auf einer Halbgerade liegen, und beschreibe die Lage dieser Halbgerade im Koordinatensystem.
d) Weise nach, dass alle Graphen der Funktionenschar im Ursprung die gleiche Tangente besitzen, und gib eine Gleichung dieser Tangente an.
e) Bestimme den Wert für 
k
 so, dass 
G
k
 durch den Punkt 
6
 
|
 
6
e
2
 verläuft, und zeichne den Graphen der zugehörigen Scharfunktion unter Berücksichtigung der bisherigen Ergebnisse.
Beispiel
f
 
x
=
x
·
e
x
x
+
1
Bestimme
  • die maximale Definitionsmenge Dmax
  • die Nullstelle(n)
  • das Verhalten von f an den Rändern von Dmax
  • das Monotonieverhalten von f und die relativen Extrempunkte
Skizziere schließlich den Graphen von f unter Einbezug aller Teilergebnisse.