Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
Kurvendiskussion - zusammengesetzte Funktionen, Matheübungen
Abiturähnliche Aufgaben. Zusammengesetzte Funktionen - Lehrplan für 12. Klasse
Aufgaben
Aufgaben rechnen
Stoff
Stoff ansehen (+Video)
Löse die Aufgabe Schritt für Schritt.
Zwischenschritte aktiviert
Für diese Aufgabe müssen Zwischenschritte aktiviert sein
Gegeben ist die Schar von Funktionen
f
k
mit
f
k
x
=
k
·
ln
x
2
+
k
und
k
∈
ℝ
+
mit jeweils maximalem Definitionsbereich
D
=
ℝ
. Der Graph von
f
k
wird mit
G
k
bezeichnet.
a) Weise nach, dass die Graphen aller Scharfunktionen die gleiche Symmetrieeigenschaft besitzen.
b) Ermittle das Verhalten von f an den Rändern von
D
f
.
c) Bestimme in Abhängigkeit von k Anzahl und Lage der Nullstellen von
f
k
.
d) Zeige, dass alle Funktionen der Schar das gleiche Monotonieverhalten besitzen.
e) Ermittle den Wert von k, für den das Minimum von
f
k
den kleinstmöglichen Wert annimmt. Gib den zugehörigen Tiefpunkt von
f
k
an.
f) Berechne für die beiden Graphen
G
k
mit
k
=
1
e
bzw.
k
=
1
jeweils die Nullstellen und die Funktionswerte an den Stellen
x
=
2
und
x
=
4
. Zeichne die beiden Graphen auf der Grundlage aller bisherigen Ergebnisse im Intervall
−
4
≤
x
≤
4
.
Schritt 1/10
Zu a)
Welche der folgenden Terme stimmen überein?
−
k
·
ln
−
x
2
+
k
k
·
ln
−
x
2
+
k
k
·
ln
x
2
+
k
k
·
ln
x
2
−
k
Welche Eigenschaft haben somit alle Graphen
G
k
?
Achsensymmetrie bezüglich der x-Achse
Achsensymmetrie bezüglich der y-Achse
Punktsymmetrie bezüglich des Ursprungs
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Stoff zum Thema (+Video)
Beispiel
f
t
x
=
e
x
3
−
x
+
t
Bestimme den Parameterwert t so, dass die Tangente an
G
t
im Punkt (1 | ?) die Steigung
1
4
hat.
Beispiel 1
Gegeben ist die für x∈ℝ definierte Funktion f mit
f
x
=
2
−
3x
·
e
−
x
.
a) Wie verhält sich die Funktion im Unendlichen?
b) Gib alle Nullstellen an.
c) Bestimme alle relativen Hoch- und Tiefpunkte.
d) Berechne f(-0,5), f(0) und f(4) und zeichne
G
f
auf der Grundlage aller bisherigen Ergebnisse im Intervall
−
0,5
≤
x
≤
4
.
e) Die Tangente an
G
f
an der Stelle
x
=
0
bildet mit den Koordinatenachsen ein Dreieck. Bestimme dessen Fläche.
Beispiel 2
Gegeben ist die Schar von Funktionen
f
k
mit
f
k
x
=
x
·
e
1
−
x
k
, Definitionsmenge
D
f
=
ℝ
und
k
∈
ℝ
+
. Der Graph von
f
k
wird mit
G
k
bezeichnet.
a) Gib die Nullstellen und das Verhalten von
f
k
für x→±∞ an.
b) Bestimme Lage und Art des Extrempunkts von
G
k
in Abhängigkeit von k.
c) Begründe, dass die Extrempunkte aller Graphen der Schar auf einer Halbgerade liegen, und beschreibe die Lage dieser Halbgerade im Koordinatensystem.
d) Weise nach, dass alle Graphen der Funktionenschar im Ursprung die gleiche Tangente besitzen, und gib eine Gleichung dieser Tangente an.
e) Bestimme den Wert für
k
so, dass
G
k
durch den Punkt
6
|
6
e
2
verläuft, und zeichne den Graphen der zugehörigen Scharfunktion unter Berücksichtigung der bisherigen Ergebnisse.
Beispiel
f
x
=
x
·
e
−
x
x
+
1
Bestimme
die maximale Definitionsmenge
D
max
die Nullstelle(n)
das Verhalten von f an den Rändern von
D
max
das Monotonieverhalten von f und die relativen Extrempunkte
Skizziere schließlich den Graphen von f unter Einbezug aller Teilergebnisse.
Titel
×
...
Schließen
Speichern
Abbrechen