Hilfe
  • Bei einem mehrstufigen Zufallsexperiment erhält man die Wahrscheinlichkeit für ein Elementarereignis, indem man die Ast-Wahrscheinlichkeiten des zugehörigen Pfades im Baumdiagramm multipliziert (1. Pfadregel).

Berechne anhand eines Baumdiagramms. Evt. auftretende Brüche sind in der Form a/b einzugeben.

  • Lena und Yuri gehen in die Prüfung, ohne einen Strich gelernt zu haben. Die Wahrscheinlichkeit, den Test nicht zu bestehen, beträgt für beide 90%. Wie groß ist die Wahrscheinlichkeit, dass...?
    ...Lena den Test besteht, Yuri aber nicht:
    ...beide durchfallen:
    ...beide bestehen:
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie liest man die Zahl der möglichen Ergebnisse an einem Baumdiagramm ab?
#872
Zufallsexperimente, bei denen mehrere Wiederholungen stattfinden oder mehrmals hintereinander eine Auswahl getroffen werden kann, nennt man mehrstufige Zufallsexperimente. Diese lassen sich übersichtlich in einem Baumdiagramm darstellen, bei dem jede Stufe im Diagramm einer Auswahl entspricht. Jeder Pfad des Baumdiagramms vom Anfang bis zu einem Endpunkt beschreibt ein mögliches Ergebnis des mehrstufigen Zufallsexperiments. Zählt man alle Pfade, so kennt man die Zahl aller möglichen Ergebnisse.
Wie berechnet man die Anzahl der Pfade in einem Baumdiagramm mit dem Zählprinzip?
#254

Laut dem Zählprinzip kann man die gesamte Anzahl der Pfade in einem Baumdiagramm berechnen, indem man die Anzahlen der Verzweigungen aller Stufen miteinander multipliziert.

Das funktioniert natürlich nur, wenn innerhalb einer Stufe nicht unterschiedliche Verzweigungszahlen vorliegen.

Beispiel
Roman stellt sich ein Menü aus Vor- Haupt- und Nachspeise zusammen. Bei der Vorspeise hat er die Auswahl zwischen X und Y. Bei der Hauptspeise kann er zwischen drei Gerichten A, B und C wählen. Und bei der Nachspeise stehen zwei Optionen R und S zur Auswahl. Wieviele Möglichkeiten hat Roman insgesamt?
Beispiel
Anna überlegt, was Sie am Samstagvormittag und -abend jeweils machen könnte. Sie könnte in der Früh an den See fahren oder in die Stadt shoppen gehen. Abends hätte Sie Lust, mit Ihrem Freund essen zu gehen oder mit ihm gemütlich zu Hause einen Film anzusehen. Wobei es auch mal wieder an der Zeit wäre, das Fitnesscenter zu besuchen. Stelle Annas mögliche Vorhaben durch ein Baumdiagramm dar.
Wann ist ein Baumdiagramm nützlich, um Wahrscheinlichkeiten zu berechnen?
#858
Setzt sich ein Zufallsexperiment aus mehreren Stufen zusammen, ist ein Baumdiagramm oft eine hilfreiche Darstellung. Wenn jeder Pfad des Baumdiagramms mit der gleichen Wahrscheinlichkeit eintritt, kann man die Wahrscheinlichkeit eines Ereignisses mit der Laplace-Formel berechnen.
Beispiel
Ein Gymnasium bietet am Tag der offenen Tür für Grundschüler verschiedene Schnupperkurse an. Zunächst werden jedem Teilnehmer zwei der drei Kernfächer Mathematik, Deutsch oder Englisch zugelost. Anschließend wird jeder Teilnehmer zufällig in einen Musik- oder Kunst-Kurs eingeteilt. Miriams Lieblingsfächer sind Englisch und Kunst. Sie interessiert sich für die Wahrscheinlichkeit des Ereignisses E: "Sie wird mindestens in einen der Englisch- oder Kunst-Kurse eingeteilt."
Zeichne ein Baumdiagramm mit allen möglichen Fällen. Bestimme anschließend P(E).
Wie berechnet man die Wahrscheinlichkeit eines Elementarereignisses in einem mehrstufigen Zufallsexperiment?
#246
Bei einem mehrstufigen Zufallsexperiment erhält man die Wahrscheinlichkeit für ein Elementarereignis, indem man die Ast-Wahrscheinlichkeiten des zugehörigen Pfades im Baumdiagramm multipliziert (1. Pfadregel).
Was sind Beispiele für Ereignisse und ihre Gegenereignisse mit den Begriffen "mindestens" oder "höchstens"?
#247
Beispiele für Ereignis und Gegenereignis:

Ereignis A: Mindestens ein Schuss geht daneben.
Gegenereignis A: Kein Schuss geht daneben.

Ereignis B: Höchstens 9 von 10 gezogenen Kugeln sind rot.
Gegenereignis B: Alle gezogenen Kugeln sind rot.

Die Wahrscheinlichkeiten von Ereignis und Gegenereignis ergänzen sich jeweils zu 100%

Wie berechnet man die Wahrscheinlichkeit eines Ereignisses E in einem mehrstufigen Zufallsexperiment?
#248
Bei mehrstufigen Zufallsexperimenten kann ein Ereignis E mehrere Pfade im Baumdiagramm umfassen. Um die Wahrscheinlichkeit von E zu bestimmen, muss man die Wahrscheinlichkeiten dieser Pfade addieren (2. Pfadregel).