Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
Quadratische Funktionen - Textaufgaben, Matheübungen
Modellieren mit quadratischen Funktionen, Extremwertaufgaben - Lehrplan
Aufgaben
Aufgaben rechnen
Stoff
Stoff ansehen (+Video)
Hilfe
Entnimm der Abbildung drei Punkte A, B und C, die auf der Parabel liegen. Gehe von der allgemeinen Form einer quadratischen Funktion aus. Stelle anhand der drei Punkte ein Gleichungssystem aus drei Gleichungen mit drei Unbekannten auf. Löse das Gleichungssystem und versuche mithilfe des nun bekannten Funktionsterms die Frage im Sachzusammenhang zu beantworten.
Bestimmte Bewegungsvorgänge (z.B. Ballwurf) und bestimmte Formen (z.B. ein an zwei Stellen befestigtes Seil) können näherungsweise als Teile von Parabeln aufgefasst werden und daher durch quadratische Funktionen modelliert werden. Sind von der Parabel ...
... drei beliebige Punkte bekannt, sollte man ein Gleichungssystem aufstellen, um die Parameter a, b und c der allgemeinen Form zu bestimmen.
... der Scheitelpunkt und ein weiterer Punkt bekannt, sollte man von der Scheitelform ausgehen und den fehlenden Parameter a durch Einsetzen des weiteren Punkts ermitteln.
... die beiden Nullstellen und ein weiterer Punkt bekannt, sollte man von der Nullstellenform ausgehen und den fehlenden Parameter a durch Einsetzen des weiteren Punkts ermitteln.
Bestimme den passenden Term einer quadratischen Funktion und beantworte die Frage im Sachzusammenhang.
Zwischenschritte aktivieren
Jenny hat eine Mehrfachbelichtung von Gregs Basketballwurf aufgenommen: In der Abbildung ist ein Koordinatensystem mit der Einheit 1 Meter ergänzt worden, so dass man drei Punkte ablesen kann, an denen sich der Mittelpunkt des Basketballs nacheinander befunden hat. Jenny ist sich gar nicht mehr sicher, ob der Ball direkt in den Korb gegangen ist. Unter der Annahme, dass die Flugbahn des Basketballs parabelförmig ist, kann diese Frage jedoch beantwortet werden.
Der zur Flugbahn passende Funktionsterm lautet:
f(x)
=
x
2
+
x
+
Der Basketball war am Ort (4,5|3) des Basketballkorbs
Meter zu tief.
(Gib "0" ein, wenn der Basketball direkt in den Korb getroffen hat.)
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Checkos: 0 max.
Ergebnis prüfen
Wenn du ein Benutzerkonto hast,
logge dich bitte zuvor ein.
Stoff zum Thema (+Video)
Wie modelliert man Parabeln in Sachzusammenhängen abhängig von gegebenen Punkten?
#926
Bestimmte Bewegungsvorgänge (z.B. Ballwurf) und bestimmte Formen (z.B. ein an zwei Stellen befestigtes Seil) können näherungsweise als Teile von Parabeln aufgefasst werden und daher durch quadratische Funktionen modelliert werden. Sind von der Parabel ...
... drei beliebige Punkte bekannt, sollte man ein Gleichungssystem aufstellen, um die Parameter a, b und c der allgemeinen Form zu bestimmen.
... der Scheitelpunkt und ein weiterer Punkt bekannt, sollte man von der Scheitelform ausgehen und den fehlenden Parameter a durch Einsetzen des weiteren Punkts ermitteln.
... die beiden Nullstellen und ein weiterer Punkt bekannt, sollte man von der Nullstellenform ausgehen und den fehlenden Parameter a durch Einsetzen des weiteren Punkts ermitteln.
Wie löst man Extremwertaufgaben in vier Schritten?
#658
Bei Extremwertaufgaben geht man am besten in folgenden Schritten vor:
Darstellung der zu optimierenden Größe als Term
Term in Abhängigkeit von einer Variable (z.B. "x") darstellen
Term in Nullstellen- oder Scheitelpunktform umwandeln
Extremwert und zugehöriges "x" bestimmen
Beispiel
Einem gleichschenkligen Dreieck mit der Basislänge 4 und der Höhe 3,5 ist ein Rechteck einbeschrieben. Bestimme Länge und Breite des Rechtecks mit dem maximalen Flächeninhalt.
Titel
×
...
Schließen
Speichern
Abbrechen