Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
Quadratische Funktionen - Textaufgaben, Matheübungen
Modellieren mit quadratischen Funktionen, Extremwertaufgaben - Lehrplan - 10 Aufgaben in 3 Levels
Abbruch - Keine Zugriffsberechtigung
Hilfe
Allgemeine Hilfe zu diesem Level
Stelle einen Term für den gesuchten Flächeninhalt auf und bestimme dessen Maximum.
Beispiel
Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
Beispielaufgabe
+Video
ansehen
Hilfe zum Thema
Bei Extremwertaufgaben geht man am besten in folgenden Schritten vor:
Darstellung der zu optimierenden Größe als Term
Term in Abhängigkeit von einer Variable (z.B. "x") darstellen
Term in Nullstellen- oder Scheitelpunktform umwandeln
Extremwert und zugehöriges "x" bestimmen
Weitere Hilfethemen
FAQ zum Aufgabenbereich und zur Bedienung
Aufgabe
Aufgabe
1 von 4
in Level 3
Bestimme den größtmöglichen Inhalt für die markierte Fläche.
Zwischenschritte aktiviert
In einem Leichtathletik-Stadion besteht die 400m-Laufbahn aus zwei Halbkreisbögen mit Radius r und zwei Strecken der Länge l. Die beiden Strecken begrenzen zusammen mit den beiden Durchmessern der Kreisbögen ein reckteckiges Flächenstück mit dem Flächeninhalt A, das z.B. als Fußballfeld genutzt werden kann (vgl. Abbildung). Ermittle, wie der Radius r der Kreisbögen gewählt werden muss, damit A möglichst groß wird, und gib den maximalen Wert für A an. Runde das Ergebnis auf ganze Quadratmeter. (Hinweis: Zwischenergebnisse sollten nicht gerundet werden.)
Maximaler Wert für den Flächeninhalt ca.
▉
m
2
Schritt 1 von 4
Wähle jeweils den passenden Term aus.
Für den Flächeninhalt des rechteckigen Feldes:
A
=
π
·
r
A
=
2π
·
r
A
=
r
·
l
A
=
2r
·
l
Für die Länge l in Abhängigkeit vom Radius r (ohne Berücksichtigung der Einheit):
l
=
400
−
πr
l
=
400
−
2r
l
=
200
−
πr
l
=
200
−
2r
Für den Funktionsterm von A in Abhängigkeit von r:
A(r)
=
2r
·
200
−
πr
A(r)
=
πr
·
200
−
2r
A(r)
=
2r
·
400
−
2r
A(r)
=
r
·
400
−
πr
Ergebnis prüfen
keine Berechtigung
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
α
β
γ
δ
ε
η
λ
μ
π
σ
φ
ω
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Lösung anzeigen
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt der Zwischenschritt als nicht gelöst und die Bewertung deiner Leistung für diese Aufgabe verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die
Beispiel-Aufgabe
zu diesem Aufgabentyp an.
Lösung anzeigen
Abbrechen
Stoff zum Thema (+Video)
Stoff zum Thema anzeigen
Wie modelliert man Parabeln in Sachzusammenhängen abhängig von gegebenen Punkten?
#926
Bestimmte Bewegungsvorgänge (z.B. Ballwurf) und bestimmte Formen (z.B. ein an zwei Stellen befestigtes Seil) können näherungsweise als Teile von Parabeln aufgefasst werden und daher durch quadratische Funktionen modelliert werden. Sind von der Parabel ...
... drei beliebige Punkte bekannt, sollte man ein Gleichungssystem aufstellen, um die Parameter a, b und c der allgemeinen Form zu bestimmen.
... der Scheitelpunkt und ein weiterer Punkt bekannt, sollte man von der Scheitelform ausgehen und den fehlenden Parameter a durch Einsetzen des weiteren Punkts ermitteln.
... die beiden Nullstellen und ein weiterer Punkt bekannt, sollte man von der Nullstellenform ausgehen und den fehlenden Parameter a durch Einsetzen des weiteren Punkts ermitteln.
Wie löst man Extremwertaufgaben in vier Schritten?
#658
Bei Extremwertaufgaben geht man am besten in folgenden Schritten vor:
Darstellung der zu optimierenden Größe als Term
Term in Abhängigkeit von einer Variable (z.B. "x") darstellen
Term in Nullstellen- oder Scheitelpunktform umwandeln
Extremwert und zugehöriges "x" bestimmen
Beispiel
Einem gleichschenkligen Dreieck mit der Basislänge 4 und der Höhe 3,5 ist ein Rechteck einbeschrieben. Bestimme Länge und Breite des Rechtecks mit dem maximalen Flächeninhalt.
Titel
×
...
Schließen
Speichern
Abbrechen