Hilfe
  • Hilfe speziell zu dieser Aufgabe
    Die Beträge der einzugebenden Zahlen ergeben in der Summe 41
  • Beispiel
    Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
  • Hilfe zum Thema
    Ausklammern heißt, dass man Terme wie

    a · b ± a · c

    a : c ± b : c

    vereinfacht zu

    a · (b ± c)

    (a ± b) : c

    Das Gesetz hinter dieser Rechneregel heißt Distributivgesetz.
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 10 in Level 4
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die Beispiel-Aufgabe zu diesem Aufgabentyp an.
Stoff zum Thema
Wie löst man eine Klammer auf, die addiert oder subtrahiert wird?
#412
Gehe beim Auflösen einer Klammer, die addiert oder subtrahiert wird, am besten in folgenden Schritten vor:
  1. Ist die erste Zahl in der Klammer positiv, so schreibe ein positives Vorzeichen davor.
  2. Löse jetzt die Klammer auf, d.h. lass die Klammer sowie das Plus- oder Minuszeichen davor verschwinden.
  3. Bei einer Plus-Klammer kann der usprüngliche Klammerinhalt einfach abgeschrieben werden; bei einer Minusklammer müssen alle Plus- und Minuszeichen umgedreht werden.
Beispiel
Plusklammer:
124
+
23
124
=
 
     [23 mit Vorzeichen versehen]
124
+
+
23
124
=
 
     [Klammer auflösen und Inhalt abschreiben]
124
 
+
23
124
=
23
- - - - - - - - - - - - - - - - -
Minusklammer
124
23
124
=
 
     [23 mit Vorzeichen versehen]
124
+
23
124
=
 
     [Klammer auflösen und Inhalt mit umgedrehten Vor-/Rechenzeichen abschreiben]
124
 
23
+
124
=
225
Was besagt das Distributivgesetz in der Mathematik?
#119
Distributivgesetz:

a · (b + c ) = a · b + a · c    ("Klammer ausmultiplizieren")

(a + b ) : c = a : c + b : c

Statt + kann man auch − einsetzen, d.h. das Distributivgesetz gilt für Summen wie auch für Differenzen, die mit einer Zahl multipliziert oder durch eine Zahl dividiert werden.

Beispiel
Löse durch Ausmultiplizieren:
6
·
40
+
7
=
?
·
40
+
6
·
?
=
?
+
?
=
?
Was bedeutet Ausklammern und welches Rechengesetz wird dabei angewendet?
#253
Ausklammern heißt, dass man Terme wie

a · b ± a · c

a : c ± b : c

vereinfacht zu

a · (b ± c)

(a ± b) : c

Das Gesetz hinter dieser Rechneregel heißt Distributivgesetz.
Beispiel
23
·
9
+
9
·
12
=
23
·
9
+
12
·
9
=
23
+
12
·
9
=
 
     [9 ausgeklammert]
11
·
9
=
99
Wie ist die korrekte Rechenreihenfolge bei Termen mit Addition und Subtraktion?
#29
Beachte bei Rechnungen, in denen Addition und Subtraktion gemischt auftreten:
  • Klammern zuerst (von innen nach außen)
  • ansonsten von links nach rechts
Solche Terme lassen sich oft leichter berechnen, indem man sie in eine reine Summe (nur noch Plus als Rechenzeichen) umwandelt. Die Reihenfolge der Summanden kann dann beliebig verändert werden.
Beispiel 1
112
134
88
+
310
=
?
Beispiel 2
11
231
?
399
=
13
122
Was bedeutet Ausklammern und wie funktioniert es?
#122
Enthält jeder einzelne Summand einer Summe denselben Faktor, so kann man diesen ausklammern, also als Faktor vor die Summenklammer schreiben (Distributivgesetz "rückwärts"):

a · b + a · c = a · (b + c)

(Ebenso mit − statt +)

Beispiel
Berechne durch Ausklammern:
2
7
·
1
3
+
2
7
·
5
6
=