Hilfe
  • Wende nicht "stur" die Formel an, sondern überlege zuerst, welche Seite Hypotenuse ist. Zur Orientierung: a liegt gegenüber von A, b gegenüber von B und c gegenüber von C!
  • Nach dem Satz des Pythagoras gilt in jedem rechtwinkligen Dreieck:

    Hypotenuse2 = erste Kathete2 + zweite Kathete2

    Zur Erinnerung: Die Hypotenuse ist diejenige der drei Seiten, die dem rechten Winkel gegenüber liegt. Sie ist damit auch immer die längste aller drei Seiten.
TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Gegeben ist das rechtwinklige Dreieck ABC mit unten stehenden Angaben. Berechne die gesuchte Seite. Ergebnis(se) falls erforderlich auf die 1. Dezimalstelle gerundet eingeben!

  • graphik
    α
    =
    90°
    a
    =
    2,3
    b
    =
    1,7
    c
     
     
    Hinweis: die Skizze verdeutlicht nur, wie die Ecken, Winkel und Seiten zueinander liegen. Mit der realen Form des gegebenen Dreiecks hat die Skizze nichts zu tun.
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Satz des Pythagoras + Beweis mittels Ähnlichkeit
Lernvideo

Satz des Pythagoras + Beweis mittels Ähnlichkeit

Kanal: Mathegym

Wie lautet der Satz des Pythagoras ohne Verwendung von Variablen?
#394
Nach dem Satz des Pythagoras gilt in jedem rechtwinkligen Dreieck:

Hypotenuse2 = erste Kathete2 + zweite Kathete2

Zur Erinnerung: Die Hypotenuse ist diejenige der drei Seiten, die dem rechten Winkel gegenüber liegt. Sie ist damit auch immer die längste aller drei Seiten.
Beispiel 1
Gegeben ist ein rechtwinkliges Dreieck ABC mit ∠A = 90°; a = 3; b = 2. Bestimme c.
Beispiel 2
Bestimme x.
graphik
Beispiel 3
Gegeben ist ein gleichschenkliges Dreieck mit Basis b = 5 LE und Flächeninhalt A = 31 FE. Berechne die Länge seiner Schenkel s.
Wie berechnet man die Entfernung zwischen zwei Punkten in der Ebene?
#883

Die Entfernung zweier Punkte A und B erhält man, indem man ein rechtwinkliges Dreieck mit AB als Hypotenuse und den Kathetenlängen xB − xA und yB − yA (gemeint sind die x- und y-Koordinaten von A und B) betrachtet. Nach dem Satz des Pythagoras muss man die Quadrate beider Differenzen summieren und aus dem Ergebnis die Wurzel ziehen, um die Entfernung zwischen A und B zu erhalten.

Beispiel
Bestimme den Abstand des Punktes P(-5|3) von der Geraden y=3x-1 mit Hilfe von Pythagoras und quadratischer Ergänzung.
Was besagen der Höhen- und der Kathetensatz in einem rechtwinkligen Dreieck ohne Verwendung von Variablen?
#395
Zeichnet man in einem rechtwinkligen Dreieck die Höhe (durch den rechten Winkel) ein, so wird die Hypotenuse in zwei Abschnitte unterteilt. Es gelten der Höhen- und der Kathetensatz:

Höhe2 = Produkt der Hypotenusenabschnitte

Kathete2 = Hypotenuse · anliegender Abschnitt

Beispiel 1
Konstruiere
 
24
  • mit Hilfe des Höhensatzes
  • mit Hilfe des Kathetensatzes
  • mit Hilfe des Satzes von Pythagoras
Beispiel 2
Bestimme in den skizzierten Dreiecken jeweils x.
graphik
Wie löst man Extremwertaufgaben in vier Schritten?
#889
Bei Extremwertaufgaben geht man am besten in folgenden Schritten vor:
  1. Darstellung der zu optimierenden Größe als Term
  2. Term in Abhängigkeit von x angeben
  3. Term umformen mithilfe der quadratischen Ergänzung.
  4. Extremwert und zugehöriges x ablesen.
Beispiel
Auf der Geraden 
g:
 
y
=
2x
1
 liegen die Punkte 
A
n
 
x
 
|
 
2x
1
 die mit B(0|4) die Strecken 
A
n
 
B
 bilden. Für welchen Wert von x ist 
c
=
A
n
 
B
 minimal? Wie lang ist dann 
c
min
?

Mathe-Aufgaben passend zu deinem Lehrplan

Aufgaben für deinen Lehrplan
Wir zeigen dir exakt die Mathe-Übungen, die für deinen Lehrplan bzw. Bundesland vorgesehen sind. Wähle dazu bitte deinen Lehrplan.
Lehrplan wählen