Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
Untersuchung von gebrochen-rationalen Funktionen und Verknüpfungen, Matheübungen
Kurvendiskussion gebrochen-rationaler Funktionen, auch verkettet mit sin und exp - Lehrplan G9 (5.-13. Klasse) - 19 Aufgaben in 5 Levels
Abbruch - Keine Zugriffsberechtigung
Hilfe
Beispiel
Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
Beispielaufgabe
+Video
ansehen
Hilfe zum Thema
Sei T: y = mx + t die Tangente an G
f
im Punkt P[x
0
|f(
0
)]. Dann gilt:
m = f ´ (x
0
)
Weitere Hilfethemen
FAQ zum Aufgabenbereich und zur Bedienung
Aufgabe
Aufgabe
1 von 3
in Level 2
Bestimme die Gleichung der Tangente T an den Graphen G
f
...
Zwischenschritte aktivieren
...im Punkt (-3|?), wenn f
x
=
3
−
5x
1
+
x
.
y
=
x
+
Ergebnis prüfen
keine Berechtigung
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
α
β
γ
δ
ε
η
λ
μ
π
σ
φ
ω
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Lösung anzeigen
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die
Beispiel-Aufgabe
zu diesem Aufgabentyp an.
Lösung anzeigen
Abbrechen
Stoff zum Thema (+Video)
Stoff zum Thema anzeigen
Wie bestimmt man die Steigung der Tangente an einem Punkt eines Graphen?
#480
Sei T: y = mx + t die Tangente an G
f
im Punkt P[x
0
|f(
0
)]. Dann gilt:
m = f ´ (x
0
)
Beispiel
f
x
=
1
−
3x
2
+
5x
Bestimme die Tangente an G
f
an der Stelle
x
=
0,6.
Wie verhält sich die Exponentialfunktion exp(x) für x gegen plus oder minus unendlich?
#551
e
x
strebt
gegen 0 für x → −∞
gegen ∞ für x → ∞
Beispiel
lim
x → 1
+
e
x
−
2
1
−
x
=
?
Was sind die wesentlichen Aspekte einer vollständigen Funktionsuntersuchung?
#481
Gute Anhaltspunkte für eine genaue Zeichnung des Funktionsgraphen liefern folgende Untersuchungen (
Kurvendiskussion
):
maximale Definitionsmenge
Punkt- und Achsensymmetrie
Schnittpunkte mit x- und y-Achse
Verhalten an den Rändern des Definitionsbereichs/Asymptoten
relative Extremwerte/Monotonieverhalten
Wendepunkte/Krümmungsverhalten
Beispiel
Untersuche die Funktion f hinsichtlich max. Derfinitionsmenge, Nullstellen, Schnittpunkt mit der y-Achse, Verhalten an den Rändern des Definitionsbereichs, Asymptoten, relative Hoch- und Tiefpunkte, Monotonieverhalten, Wendepunkte und Krümmungsverhalten. Skizziere den Graphen und gib die Wertemenge an.
a)
f
x
=
x
2
+
2x
+
1
x
+
3
b)
f
x
=
0,5x
−
3
+
2
x
−
1
Hinweis: b) ohne Wendpunkt, Krümmung und Wertemenge
Beispiel
f
x
=
x
·
e
−
x
x
+
1
Bestimme
die maximale Definitionsmenge
D
max
die Nullstelle(n)
das Verhalten von f an den Rändern von
D
max
das Monotonieverhalten von f und die relativen Extrempunkte
Skizziere schließlich den Graphen von f unter Einbezug aller Teilergebnisse.
Titel
×
...
Schließen
Speichern
Abbrechen