Hilfe
  • Durch die Gleichung y = a⋅(x - xS)² + yS (a≠0) ist eine Parabel mit den Scheitelkoordinaten xS und yS gegeben, die gegenüber der Normalparabel mit der Gleichung y = x²
    • nach unten geöffnet ist, falls a negativ ist und
    • evtl. gestreckt (falls |a|>1) bzw. gestaucht (falls |a|<1) ist.

Kreuze richtig an

  • Die Parabel mit der Gleichung 
    y
    =
    9
    8
     
    x
    2
    2
    ist gegenüber der Normalparabel in y-Richtung gestreckt.
    ist nach oben geöffnet.
    besitzt einen Scheitel, der auf der x-Achse liegt.
    schneidet die y-Achse bei 
    y
    =
    2
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie erstellt man eine Wertetabelle für eine Funktion und was bedeuten die Einträge?
#235
In einer Wertetabelle sind x- und y-Werte einander gegenübergestellt. Die Wertetabelle erhält man, indem man vorgegebene x-Werte in den Funktionsterm einsetzt und so die zugehörigen y-Werte ausrechnet. Die (x|y)-Paare sind Punkte des Grafen.
Wie bestimmt man das Maximum bzw. Minimum einer Parabelfunktion und wann tritt es auf?
#1117
  • Der Scheitelpunkt einer Parabel gibt an, wo die zugehörige Funktion ein Maximum/Minimum hat und wie groß dieses ist. Wenn xS die x-Koordinate und yS die y-Koordinate des Scheitels ist, so hat die Funktion an der Stelle xS das Maximum bzw. Minimum yS.
  • Bei einer nach oben geöffneten Parabel liegt ein Minimum, bei einer nach unten geöffneten Parabel ein Maximum vor.
Wie beeinflussen die Parameter a, xS und yS die Form und Lage einer Parabel mit der Gleichung y = a⋅(x - xS)² + yS?
#913
Durch die Gleichung y = a⋅(x - xS)² + yS (a≠0) ist eine Parabel mit den Scheitelkoordinaten xS und yS gegeben, die gegenüber der Normalparabel mit der Gleichung y = x²
  • nach unten geöffnet ist, falls a negativ ist und
  • evtl. gestreckt (falls |a|>1) bzw. gestaucht (falls |a|<1) ist.
Wie überprüft man, ob ein Punkt bezüglich eines Funktionsgraphen auf, über oder unter diesem liegt?
#234
Um zu überprüfen, ob ein Punkt (a|b) über, auf oder unter dem Graphen einer Funktion liegt, setzt man a in den Funktionsterm f(x) ein. Der Punkt liegt
  • über dem Graphen, wenn b > f(a)
  • auf dem Graphen, wenn b = f(a)
  • unter dem Graphen, wenn b < f(a)
Beispiel
f: 
y
=
1
2
 
x
2
x
+
8
;        
A
 
5
 
|
 
1
;   
B
 
2
 
|
 
9
;   
C
 
1
 
|
 
6,5
Gib jeweils an, ob der der Punkt über, auf oder unter der Parabel liegt.
Wie bestimmt man den Scheitel einer Parabel aus ihren Schnittpunkten mit der x-Achse?
#436
Weiß man, dass eine Parabel die x-Achse an den Stellen x1 und x2 schneidet, so kann man ihren Scheitel S leicht bestimmen:
  • xS = (x1 + x2) : 2
    Begründung: xS (also die x-Koordinate des Scheitels) liegt aus Symmetriegründen genau in der Mitte des Intervalls [x1 ; x2]
  • yS = p(xS)
    d.h. die y-Koordinate erhält man durch Einsetzen von xS in den Funktionsterm der Parabel
Beispiel
Die Parabel mit der Gleichung 
y
=
3x
2
2x
+
1
 schneidet die x-Achse an den Stellen 
x
1
=
1
 und 
x
2
=
1
3
. Bestimme die Koordinaten des Scheitelpunkts.
Wie löst man Extremwertaufgaben in vier Schritten?
#658
Bei Extremwertaufgaben geht man am besten in folgenden Schritten vor:
  1. Darstellung der zu optimierenden Größe als Term
  2. Term in Abhängigkeit von einer Variable (z.B. "x") darstellen
  3. Term in Nullstellen- oder Scheitelpunktform umwandeln
  4. Extremwert und zugehöriges "x" bestimmen
Beispiel
Einem gleichschenkligen Dreieck mit der Basislänge 4 und der Höhe 3,5 ist ein Rechteck einbeschrieben. Bestimme Länge und Breite des Rechtecks mit dem maximalen Flächeninhalt.