Hilfe
  • Wandle zunächst in die Form xn=a um!
  • Die Gleichung xn=a (n ∈ N)
    • hat KEINE Lösung, wenn n eine gerade Zahl ist und a<0.
    • hat GENAU ZWEI Lösungen, wenn n eine gerade Zahl und a>0, nämlich die n-te Wurzel von a als auch deren Gegenzahl.
    • hat GENAU EINE Lösung, wenn n eine ungerade Zahl und a>0, nämlich die n-te Wurzel von a.
    • hat GENAU EINE Lösung, wenn n eine ungerade Zahl und a<0, nämlich die Gegenzahl der n-te Wurzel von |a|.
TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Kreuze alle richtigen Lösungen (gerundet auf die zweite Dezimalstelle) an. Falls die Gleichung nicht lösbar ist, kreuze keine einzige Lösung an.

  • 5x
    3
    +
    5
    =
    20
    L = { 
    1,33
    ;   
    1,33
    ;   
    1,44
    ;   
    1,51
     }
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Potenzgesetze:
  1. Potenzen mit gleicher Basis werden multipliziert, indem man die Exponenten addiert und die Basis beibehält.
    ap · aq = ap + q

  2. Potenzen mit gleicher Basis werden dividiert, indem man die Exponenten subtrahiert und die Basis beibehält.
    ap : aq = ap − q

  3. Potenzen mit gleichen Exponenten werden multipliziert, indem man die Basen multipliziert und den Exponenten beibehält.
    aq · bq = (a · b)q

  4. Potenzen mit gleichen Exponenten werden dividiert, indem man die Basen dividiert und den Exponenten beibehält.
    aq : bq = (a : b)q

  5. Potenzen werden potenziert, indem man die Exponenten multipliziert.
    (ap)q = ap·q
Beispiel 1
Beispiel zu Potenzgesetz 1:
 
    
 
3
2
·
3
5
=
3
2
+
5
=
3
7
=
3
·
3
·
3
·
3
·
3
·
3
·
3
7mal
=
2187
Beispiel zu Potenzgesetz 2:
 
    
 
5
6
:
5
5
=
5
6
5
=
5
1
=
5
Beispiel zu Potenzgesetz 3:
 
    
 
5
2
·
7
2
=
5
·
7
2
=
35
2
=
1225
Beispiel zu Potenzgesetz 4:
 
    
 
15
2
:
5
2
=
15
:
5
2
=
3
2
=
9
Beispiel zu Potenzgesetz 5:
 
    
 
2
3
4
=
2
3
·
4
=
2
12
=
4096
Beispiel 2
Fasse jeweils zusammen:
(a)
 
6
7
:
6
3
(b)
 
2
5
:
6
5
Sei r eine positive rationale Zahl. Dann gilt

b−r = 1 / br

Sei b ≥ 0 und n eine natürliche Zahl. Dann gilt

b1/n = n√b

Sei b ≥ 0, m und n natürliche Zahlen. Dann gilt

bm/n = n√(bm) = (n√b)m

Beispiel
Schreibe jeweils als Potenz (ohne Wurzelzeichen) mit möglichst einfacher Basis:
3
25
9
 
          
 
1
8
Zwei Terme T1 und T2 sind äquivalent, wenn sie die gleichen Defintionsmengen besitzen und bei jeder Einsetzung aus der Definitionsmenge den selben Wert annehmen.
Beispiel
Überprüfe jeweils auf Äquivalenz:
x
2
 
und
 
x
2
 
          
 
x
2
3
 
und
 
x
3
Sei T(x) ein beliebiger Term und r eine rationale Zahl. Die Gleichung

T(x)r = a

lässt sich (evtl.) lösen, indem man beide Seiten zunächst mit "1/r" potenziert. Dadurch erhält man:

T(x) = a1/r

Keine Lösung erhält man z.B., wenn a negativ und r
  • eine gerade Zahl ist: x² = -1 (x² nie negativ)
  • eine echt rationale Zahl ist: x1/3 = -1 (Ergebnis eines Wurzelterms nie negativ)
Beispiel
Löse die folgenden beiden Gleichungen:
1
3
 
x
+
1
3
4
=
8
 
          
 
3
x
2
2
=
1
2
Die Gleichung xn=a (n ∈ N)
  • hat KEINE Lösung, wenn n eine gerade Zahl ist und a<0.
  • hat GENAU ZWEI Lösungen, wenn n eine gerade Zahl und a>0, nämlich die n-te Wurzel von a als auch deren Gegenzahl.
  • hat GENAU EINE Lösung, wenn n eine ungerade Zahl und a>0, nämlich die n-te Wurzel von a.
  • hat GENAU EINE Lösung, wenn n eine ungerade Zahl und a<0, nämlich die Gegenzahl der n-te Wurzel von |a|.
Beispiel
Löse, falls möglich:
a
 
x
4
=
5
     
b
 
x
4
=
5
     
c
 
x
3
=
5
     
d
 
x
3
=
5
     
e
 
x
3
=
0
Wird ein Produkt in Klammern potenziert, so ist beim Auflösen der Klammer darauf zu achten, dass jeder Faktor zu potenzieren ist (drittes Potenzgesetz rückwärts).
Beispiel
2
3
 
a
2
 
b
3
=
?