Hilfe
  • Senkrechter Wurf

    Das Wurfobjekt wird aus einer Anfangshöhe \(y_0\) mit einer Anfangsgeschwindigkeit \(v_0\) senkrecht nach oben geworfen.
    • Das Wurfobjekt wird auf seinem Weg nach oben aufgrund der Erdbeschleunigung \(g\), die nach unten wirkt, abgebremst.
    • Nach der Steigzeit \(t_S\) erreicht das Objekt im Umkehrpunkt seine maximale Höhe \(y_{max}\). Im Umkehrpunkt ist seine Geschwindigkeit null.
    • Dann fällt das Wurfobjekt gleichmäßig beschleunigt nach unten, bis es nach der Gesamtzeit \(t_{max}\) bzw. \(t_{ges}\) am Boden auftrifft.

    Formeln:
    • Geschwindigkeit in Abhängigkeit der Zeit:
      \(v(t) = v_0 - g \ t\)
    • Höhe in Abhängigkeit der Zeit:
      \(y(t) = y_0 + v_0 \ t - \dfrac 12 \ g \ t^2\)
    Diagramme:

Kreuze alle richtigen Aussagen an.
Achtung: Auf diesem Level sollten möglichst ALLE Aufgaben gelöst werden!

  • Ein Ball wird vom Boden aus senkrecht nach oben geworfen und erreicht nach 
    5,0 s
     wieder die Abwurfstelle.
    Steigzeit und Fallzeit sind gleich lang.
    Die Steigzeit ist kürzer als die Fallzeit.
    Die Steigzeit ist länger als die Fallzeit.
    Aus der Steigzeit kann (ohne weitere Angaben) die Anfangsgeschwindigkeit berechnet werden.
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Senkrechter Wurf
Lernvideo

Senkrechter Wurf

Kanal: LEIFI physik

Senkrechter Wurf

Das Wurfobjekt wird aus einer Anfangshöhe \(y_0\) mit einer Anfangsgeschwindigkeit \(v_0\) senkrecht nach oben geworfen.
  • Das Wurfobjekt wird auf seinem Weg nach oben aufgrund der Erdbeschleunigung \(g\), die nach unten wirkt, abgebremst.
  • Nach der Steigzeit \(t_S\) erreicht das Objekt im Umkehrpunkt seine maximale Höhe \(y_{max}\). Im Umkehrpunkt ist seine Geschwindigkeit null.
  • Dann fällt das Wurfobjekt gleichmäßig beschleunigt nach unten, bis es nach der Gesamtzeit \(t_{max}\) bzw. \(t_{ges}\) am Boden auftrifft.

Formeln:
  • Geschwindigkeit in Abhängigkeit der Zeit:
    \(v(t) = v_0 - g \ t\)
  • Höhe in Abhängigkeit der Zeit:
    \(y(t) = y_0 + v_0 \ t - \dfrac 12 \ g \ t^2\)
Diagramme:
Beispiel
Ein Ball wird vom Boden aus senkrecht nach oben geworfen und erreicht nach \(10,0\ s\) wieder die Abwurfstelle. Berechne die Steigzeit \(t_S\), die Abwurfgeschwindigkeit \(v_0\) und die maximale Höhe \(y_{max}\).
Gesamtenergie beim senkrechten Wurf

Befindet sich das Wurfobjekt in der Höher \(y(t)\) und hat die momentane Geschwindigkeit \(v(t)\), so gilt für die Gesamtenergie (ohne Reibung):
\(E=m\ g\ y(t) + \dfrac 12 m\ v(t)^2\)

Formel angewendet in den speziellen Punkten:
Abwurf:
\(E=m\ g\ y_0 + \dfrac 12 m\ v_0^2\)
Umkehrpunkt:
\(E=m\ g\ y_{max}\)
Aufprall:
\(E=\dfrac 12 m\ v_{max}^2\)

mit
\(y_0\)  Anfangs-/Abwurfhöhe
\(y_{max}\)  maximale Höhe / Umkehrpunkt
\(v_0\)  Anfangs-/Abwurfgeschwindigkeit
\(v_{max}\)  End-/Aufprallgeschwindigkeit
\(m\)  Masse
\(g\)  Erdbeschleunigung
Beispiel
Ein Ball erreicht beim senkrechten Wurf nach oben (Abwurfgeschwindigkeit \(v_0=44\dfrac ms\)) eine maximale Flughöhe von \(120\ m\).
Berechne...
  • die Abwurfhöhe \(y_0\),
  • die Endgeschwindigkeit \(v_{max}\),
  • die Geschwindigkeit in \(60\ m\) Höhe.