Hilfe
TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Bestimme die gefragten Wahrscheinlichkeiten. Die grau gefärbten Felder können hilfsweise ausgefüllt werden, sie werden aber nicht bewertet.

  • Eine Tiefgarage mit 50 Plätzen ist mit Autos vollgeparkt. 20 der geparkten Fahrzeuge haben ein Münchner Kennzeichen, darunter 3 BMWs. 29 Fahrzeuge haben weder ein Münchner Kennzeichen noch handelt es sich bei ihnen um einen BMW. Berechne die Wahrscheinlichkeit, dass
    1. das nächste Auto, das herausfährt, kein BMW ist.
    2. der nächste BMW, der herausfährt, kein Münchner Kennzeichen hat.
    3. als nächstes ein BMW mit Münchner Kennzeichen herausfährt.
    B
    B
    M
    M
    P
    1
    =
    P
    2
    =
    P
    3
    =
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Was versteht man unter den Wahrscheinlichkeiten P(A ∩ B), P_A(B) und P_B(A), wo treten sie im Baumdiagramm auf und wie berechnet man sie?
#377
Unterscheide sorgfältig zwischen
  • P(A ∩ B)
    = Wahrscheinlichkeit, dass A und B eintritt; im Baumdiagramm steht sie am Ende des A - B - bzw. B - A - Pfades.

  • PA(B)
    = Wahrscheinlichkeit von Ereignis B unter der Bedingung, dass auch A eintritt (eingetreten ist); im Baumdiagramm steht sie über dem Ast, der von A zu B führt.
    = P(A ∩ B) / P(A)

  • PB(A)
    = Wahrscheinlichkeit von Ereignis A unter der Bedingung, dass auch B eintritt (eingetreten ist); im Baumdiagramm steht sie über dem Ast, der von B zu A führt.
    = P(A ∩ B) / P(B)
Beispiel
Betrachte die Ereignisse B = "Person trägt Brille" und K = "Person ist kurzsichtig". Drücke mit Worten aus und markiere in einem Baumdiagramm:
P
 
B ∩ K
 
    
 
P
B
 
K
 
    
 
P
K
 
B
Beispiel
Von den 36 Frauen, die ohne Begleitung zu einer Single-Party kommen, sind fünf in Wirklichkeit schon in festen Händen. Jede sechste Frau auf der Party sieht nach Jans Meinung "toll" aus. Was er nicht weiß: Nur zwei von den "Tollen" sind noch zu haben. Bei einem Spiel wird Jan mit einer zufällig ausgewählten Frau bekannt gemacht. Wie groß ist die Wahrscheinlichkeit, dass
  • eine tolle Frau noch zu haben ist? (= p1)
  • Jan die Frau toll findet? (= p2)
  • Jan die Frau toll findet, wenn sie schon vergeben ist? (= p3)
  • Jan die Frau nicht toll findet, sie aber noch zu haben ist? (= p4)