Bestimme die gefragten Warscheinlichkeiten. Brüche in der Form "a/b" eingeben. Die grau gefärbten Felder können hilfsweise ausgefüllt werden, sie werden aber nicht bewertet.

  • B
    B
    M
    3
    17
    M
    1
    50
     
    graphik
    p
    1
    =
    ;
    p
    2
    =
    ;
    p
    3
    =
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Was versteht man unter den Wahrscheinlichkeiten P(A ∩ B), P_A(B) und P_B(A), wo treten sie im Baumdiagramm auf und wie berechnet man sie?
#377
Unterscheide sorgfältig zwischen
  • P(A ∩ B)
    = Wahrscheinlichkeit, dass A und B eintritt; im Baumdiagramm steht sie am Ende des A - B - bzw. B - A - Pfades.

  • PA(B)
    = Wahrscheinlichkeit von Ereignis B unter der Bedingung, dass auch A eintritt (eingetreten ist); im Baumdiagramm steht sie über dem Ast, der von A zu B führt.
    = P(A ∩ B) / P(A)

  • PB(A)
    = Wahrscheinlichkeit von Ereignis A unter der Bedingung, dass auch B eintritt (eingetreten ist); im Baumdiagramm steht sie über dem Ast, der von B zu A führt.
    = P(A ∩ B) / P(B)
Beispiel
Betrachte die Ereignisse B = "Person trägt Brille" und K = "Person ist kurzsichtig". Drücke mit Worten aus und markiere in einem Baumdiagramm:
P
 
B ∩ K
 
    
 
P
B
 
K
 
    
 
P
K
 
B
Beispiel
Von den 36 Frauen, die ohne Begleitung zu einer Single-Party kommen, sind fünf in Wirklichkeit schon in festen Händen. Jede sechste Frau auf der Party sieht nach Jans Meinung "toll" aus. Was er nicht weiß: Nur zwei von den "Tollen" sind noch zu haben. Bei einem Spiel wird Jan mit einer zufällig ausgewählten Frau bekannt gemacht. Wie groß ist die Wahrscheinlichkeit, dass
  • eine tolle Frau noch zu haben ist? (= p1)
  • Jan die Frau toll findet? (= p2)
  • Jan die Frau toll findet, wenn sie schon vergeben ist? (= p3)
  • Jan die Frau nicht toll findet, sie aber noch zu haben ist? (= p4)