Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
4.6 Modellieren von Wachstumsprozessen, Matheübungen
- Lehrwerk Lambacher Schweizer (5.-13. Klasse)
Aufgaben
Aufgaben rechnen
Stoff
Stoff ansehen (+Video)
Verwende die ungerundeten Teilergebnisse zum Weiterrechnen.
Zwischenschritte aktivieren
Am 9. Mai 2010 betrug der Luftdruck in Feldberg (1495 m) 835 hPa und in Freiburg (288 m) 976 hPa. Mit welcher Exponentialfunktion lässt sich an diesem Tag für die Höhe x (in m) über dem Meeresspiegel der Luftdruck (in hPa) berechnen?
f(x)
=
b
·
a
x
mit
b
=
987
998
1005
1013 und
a
=
0,999871
0,99871
0,9871
0,871
Mit freundlicher Genehmigung von Klaus Wierzioch, www.mathe-physik-aufgaben.de
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Stoff zum Thema (+Video)
Was bleibt beim exponentiellen Wachstum gleich und wie geht man bei typischen Fragestellungen vor?
#724
Exponentielles Wachstum:
Zunahme pro Zeitschritt ist - prozentual - immer gleich, d.h.
B(n + 1) = B(n) · k.
B(n) gesucht:
Den Bestand nach n Zeitschritten berechnet man mithilfe der Formel:
B(n) = B(0) · k
n
n gesucht:
Ist n gesucht, löst man die Formel nach n auf:
B(n) = B(0) · k
n
| : B(0)
B(n) / B(0) = k
n
| log
log( B(n) / B(0) ) = log( k
n
)
log( B(n) / B(0) ) = n · log( k ) | : log( k )
n = log( B(n) / B(0) ) / log( k )
B(0) gesucht:
Ist B(0) gesucht, löst man die Formel nach B(0) auf:
B(n) = B(0) · k
n
| : k
n
B(0) = B(n) / k
n
k gesucht:
Ist k gesucht, löst man die Formel nach k auf:
B(n) = B(0) · k
n
| : B(0)
B(n) / B(0) = k
n
Zuletzt zieht man noch die n-te Wurzel
Beispiel 1
Ein Kapital von 2000 € vermehrt sich auf einem Sparkonto pro Jahr um 0,1%.
Nach 8 Jahren beträgt das Kapital auf dem Konto:
?
Euro
?
Cent
Beispiel 2
Ein Guthaben von 5000 € wird mit 3,7% verzinst. Nach wie vielen Jahren ist es auf 8000 € angewachsen?
Nach ? Jahren beträgt das Guthaben 8000 €.
Was ist der allgemeine Term einer Exponentialfunktion und welche Bedeutung haben die Parameter?
#350
Funktionen mit der Gleichung f(x) = b · a
x
heißen
Exponentialfunktionen
. Dabei ist
a > 0 der Wachstumsfaktor und
b = f(0) der Anfangsbestand
Beispiel
Ein zu festem Jahreszinssatz angelegtes Kapital ist innerhalb von 10 Jahren auf 300% angewachsen. Wie hoch ist der Zinsatz?
Titel
×
...
Schließen
Speichern
Abbrechen