Hilfe
  • Für diesen Aufgabentyp steht keine spezielle Hilfe zur Verfügung.
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 3 in Level 4
  • Verwende die ungerundeten Teilergebnisse zum Weiterrechnen.
  • Am 9. Mai 2010 betrug der Luftdruck in Feldberg (1495 m) 835 hPa und in Freiburg (288 m) 976 hPa. Mit welcher Exponentialfunktion lässt sich an diesem Tag für die Höhe x (in m) über dem Meeresspiegel der Luftdruck (in hPa) berechnen?
    f(x)
    =
    b
    ·
    a
    x
     
    mit
    b
    =
    987     
     
    998     
     
    1005     
     
    1013     und
    a
    =
    0,999871     
     
    0,99871     
     
    0,9871     
     
    0,871
    Mit freundlicher Genehmigung von Klaus Wierzioch, www.mathe-physik-aufgaben.de
  • keine Berechtigung
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich.
Stoff zum Thema (+Video)
Was bleibt beim exponentiellen Wachstum gleich und wie geht man bei typischen Fragestellungen vor?
#724
Exponentielles Wachstum:
Zunahme pro Zeitschritt ist - prozentual - immer gleich, d.h.
B(n + 1) = B(n) · k.

  • B(n) gesucht:
  • Den Bestand nach n Zeitschritten berechnet man mithilfe der Formel:
    B(n) = B(0) · kn

  • n gesucht:
  • Ist n gesucht, löst man die Formel nach n auf:
    B(n) = B(0) · kn | : B(0)
    B(n) / B(0) = kn | log
    log( B(n) / B(0) ) = log( kn)
    log( B(n) / B(0) ) = n · log( k ) | : log( k )
    n = log( B(n) / B(0) ) / log( k )

  • B(0) gesucht:
  • Ist B(0) gesucht, löst man die Formel nach B(0) auf:
    B(n) = B(0) · kn | : kn
    B(0) = B(n) / kn

  • k gesucht:
    Ist k gesucht, löst man die Formel nach k auf:
    B(n) = B(0) · kn | : B(0)
    B(n) / B(0) = kn
    Zuletzt zieht man noch die n-te Wurzel
Beispiel 1
Ein Kapital von 2000 € vermehrt sich auf einem Sparkonto pro Jahr um 0,1%.
Nach 8 Jahren beträgt das Kapital auf dem Konto:
?
 
Euro
 
?
 
Cent
Beispiel 2
Ein Guthaben von 5000 € wird mit 3,7% verzinst. Nach wie vielen Jahren ist es auf 8000 € angewachsen?
Nach ? Jahren beträgt das Guthaben 8000 €.
Was ist der allgemeine Term einer Exponentialfunktion und welche Bedeutung haben die Parameter?
#350
Funktionen mit der Gleichung f(x) = b · ax heißen Exponentialfunktionen. Dabei ist
  • a > 0 der Wachstumsfaktor und
  • b = f(0) der Anfangsbestand
Beispiel
Ein zu festem Jahreszinssatz angelegtes Kapital ist innerhalb von 10 Jahren auf 300% angewachsen. Wie hoch ist der Zinsatz?