Hilfe
  • Periodische Dezimalbrüche als Bruch "a/b" bzw. "-a/b" eingeben.
  • Unterscheide:
    • Bei a · x = b muss man (links und rechts) durch a dividieren, um x zu erhalten
    • Bei x : a = b muss man (links und rechts) mit a multiplizieren, um x zu erhalten
    • Bei x + a = b muss man (links und rechts) a subtrahieren, um x zu erhalten
    • Bei x − a = b muss man (links und rechts) a addieren, um x zu erhalten
    • Bei a − x = b muss man (links und rechts) x addieren und b subtrahieren, um x zu erhalten
TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Löse die Gleichungen. Gib Brüche in der Form "a/b" bzw. "-a/b" an oder, falls möglich, als (ungerundete) endliche Dezimalzahl.

  • 6x
    =
    8
     
         
     
    x
    =
    6
    +
    y
    =
    8
     
         
     
    y
    =
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
LINEARE GLEICHUNG lösen einfach erklärt – viele Beispiele
Lernvideo

LINEARE GLEICHUNG lösen einfach erklärt – viele Beispiele

Kanal: MathemaTrick

Wie löst man Gleichungen der Form a + x = b, x + a = b und x - a = b?
#981

Bei Gleichungen der Form a + x = b und x + a = b muss man auf beiden Seiten a subtrahieren.

Bei Gleichungen der Form x − a = b muss man auf beiden Seiten a addieren.

Wie löst man Gleichungen der Form a · x = b und x : a = b?
#526

Bei Gleichungen der Form a · x = b muss man auf beiden Seiten durch a dividieren.

Bei Gleichungen der Form x : a = b muss man beide Seiten mit a multiplizieren.

Beispiel
8
·
x
=
24
:
8
x
=
3
- - - - - - - - - - - - - - - - - - -
x
:
8
=
24
·
8
x
=
192
Welche mathematische Operation ist erforderlich, um x aus den folgenden Gleichungen zu isolieren?
#105
Unterscheide:
  • Bei a · x = b muss man (links und rechts) durch a dividieren, um x zu erhalten
  • Bei x : a = b muss man (links und rechts) mit a multiplizieren, um x zu erhalten
  • Bei x + a = b muss man (links und rechts) a subtrahieren, um x zu erhalten
  • Bei x − a = b muss man (links und rechts) a addieren, um x zu erhalten
  • Bei a − x = b muss man (links und rechts) x addieren und b subtrahieren, um x zu erhalten
Beispiel
Löse die Gleichungen
8x
=
3
 
   und   
 
8
y
=
3