Hilfe
  • Hilfe zum Thema
    Ein Kreis mit Radius r hat den
    • Durchmesser d = 2r
    • Umfang U = d·π = 2r·π
    • Flächeninhalt A = r²·π
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 3 in Level 9
  • Löse die Aufgabe und ergänze dann richtig.
  • Ein runder Tisch zum Ausziehen (Radius r) kann durch eine rechteckige Einlegeplatte vergrößert werden. Wie lang muss diese Platte, abhängig vom Radius r des Tisches sein, damit sich die Tischfläche verdoppelt?
    graphik
    x
    =
    ·
    π
  • keine Berechtigung
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die Hilfe zu dieser Aufgabe an.
Stoff zum Thema (+Video)
Wie berechnet man Umfang und Flächeninhalt eines Kreises?
#261
Ein Kreis mit Radius r hat den
  • Durchmesser d = 2r
  • Umfang U = d·π = 2r·π
  • Flächeninhalt A = r²·π
Wie beeinflusst die Verdoppelung oder Verdreifachung des Radius eines Kreises den Durchmesser, Umfang und die Fläche?
#472
Verdoppelt man den Radius eines Kreises, so verdoppeln sich auch sein Durchmesser und sein Umfang, dagegen vervierfacht sich seine Fläche (2² = 4).

Verdreifacht man den Radius eines Kreises, so verdreifachen sich auch sein Durchmesser und sein Umfang, dagegen verneunfacht sich seine Fläche (3² = 9)

Wie beeinflusst die Ver-n-fachung des Radius den Umfang und den Flächeninhalt eines Kreises?
#263

Ver-n-fachung des Radius bedeutet
Ver-n-fachung des Umfangs und
Ver-n²-fachung des Flächeninhalts.

Radius und Durchmesser sind damit zueinander proportional, Radius (bzw. Umfang) und Flächeninhalt dagegen nicht.

Beispiel
Gegeben sind zwei Kreise k1 und k2, von denen man weiß:
6u
1
=
u
2
Vervollständige damit die Gleichungen
r
1
=
?r
2
A
1
=
?A
2
Wie berechnet man Umfang und Flächeninhalt von Figuren mit Kreisen, Halbkreisen und Viertelkreisen?
#262
Figuren, in denen unterschiedliche Kreise, Halbkreise und Viertelkreise vorkommen, lassen sich sowohl vom Umfang als auch vom Flächeninhalt her berechnen, indem man die Einzelumfänge bzw. -flächen addiert.
Beispiel
Berechne Umfang und Flächeninhalt der abgebildeten Figur:
graphik