Hilfe
  • Suche dir ein geeignetes rechtwinkliges Dreieck, in dem der gesuchte Winkel auftritt.

Bestimme den gesuchten Winkel. Ergebnis(se) falls erforderlich auf die 1. Dezimalstelle gerundet eingeben!

  • graphik
    Mit welchem Winkel φ ist die markierte Seitenfläche gegen die Grundfläche geneigt? Es handelt sich um eine gerade Pyramide mit rechteckiger Grundfläche.
    φ ≈
     
     
    °
    (Der Winkel φ ist bewusst nicht eingezeichnet, aber im Text ganz klar beschrieben.)
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie berechnet man das Volumen einer Pyramide?
#492
Das Volumen einer Pyramide hängt nur von ihrer Grundfläche G und ihrer Höhe h ab, und zwar

V = ⅓ · G · h

Wie setzt sich der Mantel einer Pyramide zusammen und was ergänzt man, um die gesamte Oberfläche zu erhalten?
#493
Der Mantel einer Pyramide setzt sich aus mindestens drei Dreiecksflächen zusammen. Mantelfläche und Grundfläche einer Pyramide ergeben zusamen deren Oberfläche.
Welche Werkzeuge sind in der Raumgeometrie für den Umgang mit Strecken und Winkeln wichtig?
#772
Die wichtigsten Werkzeuge beim Umgang mit Strecken und Winkeln in der Raumgeometrie:

Im rechtwinkligen Dreieck mit (Gegen-)Kathete a und (An-)Kathete b und Hypotenuse c gilt:
  • Der Satz von Pythagoras: a² + b² = c²
  • Trigonometrische Gleichungen: sin(α) = a/c, cos(α) = b/c, tan(α) = a/b

Auch der Strahlensatz kann in der Raumgeometrie oft weiterhelfen:

In der V-Figur sind folgende Verhältnisse gleich:

e : b = f : c = d : a (kleines Dreieck : großes Dreieck)

e : h = f : g (vorderer Abschnitt : hinterer Abschnitt)

Wie berechnet man die Oberflächen von Prismen, Pyramiden, Zylindern und Kegeln und aus welchen Flächen setzen sie sich zusammen?
#771
Oberflächenformeln im Überblick (G: Grundfläche; M: Mantelfläche):
  • Gerades Prisma: O = 2·G + M (Der Mantel besteht aus mehreren Rechtecken)
  • Pyramide: O = G + M (Der Mantel besteht aus mehreren Dreiecken)
  • Zylinder: O = 2·G + M = 2 · r² π + 2 π r · h (G ist eine Kreisfläche, M eine Rechtecksfläche)
  • Kegel: O = G + M = r² π + r π m (G ist eine Kreisfläche, M die Fläche eines Kreissektors)