Hilfe
  • Allgemeine Hilfe zu diesem Level

    Durch einen Dezimalzahl wird dividiert, indem man das Komma bei Dividend und Divisor um so viele Stellen verschiebt, das der Divisor eine natürliche Zahl ist. Beispiel:

    5 : 0,5 = 50 : 5 = 10.

    Mit einer Dezimalzahl wird multipliziert, indem man das Komma bei dem ersten und zweiten Faktor weglässt. Das Ergebnis hat dann so viele Dezimale (Nachkommastellen), wie die beiden Faktoren zusammen hatten. Beispiel:

    2,5 · 1,2 = ?
    25 · 12 = 300
    Beide Faktoren haben zusammen 2 Dezimale, darum wird das Komma nach 3 gesetzt:
    2,5 · 1,2 = 3,00
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 5 in Level 4
  • Welche Umformung führt zum Ziel? Kreuze den richtigen Rechenschritt und ALLE richtigen Lösungen an (sofern mehrere richtig sind).
  • 2,5
    ·
    x
    =
    7,5
    ?
    +
    2,5
     
        
     
    ·
    2,5
     
        
     
    2,5
     
        
     
    :
    2,5
    Lösung: x=
    5
     
        
     
    3
     
        
     
    10
     
        
     
    18,75
  • keine Berechtigung
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die Hilfe zu dieser Aufgabe an.
Stoff zum Thema (+Video)
Lineare Gleichungen (Teil 1)
Lernvideo

Lineare Gleichungen (Teil 1)

Kanal: Mathegym

Wie löst man Gleichungen der Form a + x = b, x + a = b und x - a = b?
#981

Bei Gleichungen der Form a + x = b und x + a = b muss man auf beiden Seiten a subtrahieren.

Bei Gleichungen der Form x − a = b muss man auf beiden Seiten a addieren.

Wie löst man Gleichungen der Form a · x = b und x : a = b?
#526

Bei Gleichungen der Form a · x = b muss man auf beiden Seiten durch a dividieren.

Bei Gleichungen der Form x : a = b muss man beide Seiten mit a multiplizieren.

Beispiel
8
·
x
=
24
:
8
x
=
3
- - - - - - - - - - - - - - - - - - -
x
:
8
=
24
·
8
x
=
192
Welche mathematische Operation ist erforderlich, um x aus den folgenden Gleichungen zu isolieren?
#105
Unterscheide:
  • Bei a · x = b muss man (links und rechts) durch a dividieren, um x zu erhalten
  • Bei x : a = b muss man (links und rechts) mit a multiplizieren, um x zu erhalten
  • Bei x + a = b muss man (links und rechts) a subtrahieren, um x zu erhalten
  • Bei x − a = b muss man (links und rechts) a addieren, um x zu erhalten
  • Bei a − x = b muss man (links und rechts) x addieren und b subtrahieren, um x zu erhalten
Beispiel 1
Löse die Gleichungen
8x
=
3
 
   und   
 
8
y
=
3
Beispiel 2
Löse die Gleichungen
2
3
 
x
=
7
1
6
 
   und   
 
2
3
+
x
=
7
1
6