Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
    Ist eine Funktion umkehrbar, so erhält man den Term der Umkehrfunktion nach folgendem Rezept:
    1. Löse die Gleichung y = f(x) nach x auf.
    2. Vertausche dann x und y.

Gib den Term der Umkehrfunktion an, falls diese existiert.

f
 
x
=
1
x
, D=ℝ+
f
1
 
x
=
1
x
2
=
x
=
x
2
existiert nicht
  • Nebenrechnung

Tipp: Wähle deinen Lehrplan, und wir zeigen dir genau die Aufgaben an, die für deine Schule vorgesehen sind.
Lernvideo
Potenzfunktionen mit rationalem Exponent

Ist eine Funktion umkehrbar, so erhält man den Term der Umkehrfunktion nach folgendem Rezept:
  1. Löse die Gleichung y = f(x) nach x auf.
  2. Vertausche dann x und y.
Eine Funktion mit der Gleichung y = xr, r∈ℚ, heißt Potenzfunktion. Ihre maximale Definitionsmenge hängt vom Exponenten r ab.
  • Ist r negativ, so lässt sich die Potenz in einen Bruch umwandeln und damit scheidet "x=0" aus (denn der Nenner darf nicht Null sein).
  • Ist r= p/q ein Bruch und keine ganze Zahl, so lässt sich die Potenz in eine Wurzel umwandeln und damit scheidet "x<0" aus (denn die Wurzel einer negativen Zahl ist nicht definiert).
Potenzfunktionen f mit dem Funktionsterm f(x) = xr, r∈ℚ, können graphisch ganz unterschiedlich aussehen. Grob lassen sich drei Klassen unterscheiden:
  • r<0: der Graph ähnelt der Hyperbel mit der Gleichung y=1/x. Prägnante Erkennungsmerkmale: die Koordinatenachsen als Asymptoten. Je größer |r| (also der Betrag von r), desto schneller nähert sich der Graph der x-Achse an. Ansonsten ist zu unterscheiden, ob r eine ganze Zahl ist oder nicht. Falls nicht, so ist der Graph nur rechts von der y-Achse definiert. Andernfalls ist die Hyperbel symmetrisch zur y-Achse (r gerade) bzw. zum Ursprung (r ungerade).
  • 0<r<1: ähnlich dem Graph der Wurzelfunktion y = √x. Prägnante Erkennungsmerkmale: nur für x≥0 definiert, streng monoton steigend, für große x ins Unendliche wachsend, aber mit nachlassender Steigung. Je größer |r|, desto schneller geht der Graph für große x-Werte nach oben.
  • r>1: ähnlich der Normalparabel y=x², allerdings nur für x≥0 definiert - es sei denn, r ist eine natürliche Zahl: in diesem Fall symmetrisch zur y-Achse, falls r gerade bzw. zum Ursprung, falls r ungerade. Auch hier gilt: Je größer |r|, desto schneller geht der Graph für große x-Werte nach oben.