Hilfe
  • Potenzfunktionen f mit dem Funktionsterm f(x) = xr, r∈ℚ, können graphisch ganz unterschiedlich aussehen. Grob lassen sich drei Klassen unterscheiden:
    • r<0: der Graph ähnelt der Hyperbel mit der Gleichung y=1/x. Prägnante Erkennungsmerkmale: die Koordinatenachsen als Asymptoten. Je größer |r| (also der Betrag von r), desto schneller nähert sich der Graph der x-Achse an. Ansonsten ist zu unterscheiden, ob r eine ganze Zahl ist oder nicht. Falls nicht, so ist der Graph nur rechts von der y-Achse definiert. Andernfalls ist die Hyperbel symmetrisch zur y-Achse (r gerade) bzw. zum Ursprung (r ungerade).
    • 0<r<1: ähnlich dem Graph der Wurzelfunktion y = √x. Prägnante Erkennungsmerkmale: nur für x≥0 definiert, streng monoton steigend, für große x ins Unendliche wachsend, aber mit nachlassender Steigung. Je größer |r|, desto schneller geht der Graph für große x-Werte nach oben.
    • r>1: ähnlich der Normalparabel y=x², allerdings nur für x≥0 definiert - es sei denn, r ist eine natürliche Zahl: in diesem Fall symmetrisch zur y-Achse, falls r gerade bzw. zum Ursprung, falls r ungerade. Auch hier gilt: Je größer |r|, desto schneller geht der Graph für große x-Werte nach oben.

Ordne richtig zu.

  • graphik
    Abgebildet sind die Graphen folgender Potenzfunktionen:
    1
        
    y
    =
     
    x
    2
        
    y
    =
     
    x
    3
        
    y
    =
     
    x
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Potenzfunktionen mit rationalem Exponent
Lernvideo

Potenzfunktionen mit rationalem Exponent

Kanal: Mathegym

Welche Klassen von Potenzfunktionen f(x) = x^r, r ∈ ℚ, lassen sich graphisch unterscheiden?
#763
Potenzfunktionen f mit dem Funktionsterm f(x) = xr, r∈ℚ, können graphisch ganz unterschiedlich aussehen. Grob lassen sich drei Klassen unterscheiden:
  • r<0: der Graph ähnelt der Hyperbel mit der Gleichung y=1/x. Prägnante Erkennungsmerkmale: die Koordinatenachsen als Asymptoten. Je größer |r| (also der Betrag von r), desto schneller nähert sich der Graph der x-Achse an. Ansonsten ist zu unterscheiden, ob r eine ganze Zahl ist oder nicht. Falls nicht, so ist der Graph nur rechts von der y-Achse definiert. Andernfalls ist die Hyperbel symmetrisch zur y-Achse (r gerade) bzw. zum Ursprung (r ungerade).
  • 0<r<1: ähnlich dem Graph der Wurzelfunktion y = √x. Prägnante Erkennungsmerkmale: nur für x≥0 definiert, streng monoton steigend, für große x ins Unendliche wachsend, aber mit nachlassender Steigung. Je größer |r|, desto schneller geht der Graph für große x-Werte nach oben.
  • r>1: ähnlich der Normalparabel y=x², allerdings nur für x≥0 definiert - es sei denn, r ist eine natürliche Zahl: in diesem Fall symmetrisch zur y-Achse, falls r gerade bzw. zum Ursprung, falls r ungerade. Auch hier gilt: Je größer |r|, desto schneller geht der Graph für große x-Werte nach oben.
Wie hängt die maximale Definitionsmenge einer Potenzfunktion von ihrem Exponenten ab?
#760
Eine Funktion mit der Gleichung y = xr, r∈ℚ, heißt Potenzfunktion. Ihre maximale Definitionsmenge hängt vom Exponenten r ab.
  • Ist r negativ, so lässt sich die Potenz in einen Bruch umwandeln und damit scheidet "x=0" aus (denn der Nenner darf nicht Null sein).
  • Ist r= p/q ein Bruch und keine ganze Zahl, so lässt sich die Potenz in eine Wurzel umwandeln und damit scheidet "x<0" aus (denn die Wurzel einer negativen Zahl ist nicht definiert).
Wie bestimmt man den Term der Umkehrfunktion einer umkehrbaren Funktion?
#856
Ist eine Funktion umkehrbar, so erhält man den Term der Umkehrfunktion nach folgendem Rezept:
  1. Löse die Gleichung y = f(x) nach x auf.
  2. Vertausche dann x und y.

Mathe-Aufgaben passend zu deinem Lehrplan

Aufgaben für deinen Lehrplan
Wir zeigen dir exakt die Mathe-Übungen, die für deinen Lehrplan bzw. Bundesland vorgesehen sind. Wähle dazu bitte deinen Lehrplan.
Lehrplan wählen
Diese Aufgabentypen erwarten dich in den weiteren Übungslevel:
1. Level3 Aufgaben
Potenzfunktionen - rationaler Exponent
2. Level5 Aufgaben
Potenzfunktionen - rationaler Exponent
3. Level5 Aufgaben
Potenzfunktionen - rationaler Exponent
4. Level5 Aufgaben
Potenzfunktionen - rationaler Exponent
5. Level3 Aufgaben
Potenzfunktionen - rationaler Exponent

Dies ist nur eine kleine Auswahl. In unserem Aufgabenbereich findest du viele weitere Mathe-Übungen, die zu deiner Schule und deinem Lehrplan passen!

Zum Aufgabenbereich