Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
5.8 Vermischte Aufgaben, Matheübungen
Geometrische Konstruktionen - Lehrwerk Fundamente der Mathematik (5.-9. Klasse)
Aufgaben
Aufgaben rechnen
Stoff
Stoff ansehen
Hilfe
Zwei Figuren heißen
kongruent
, wenn sie deckungsgleich sind. Praktisch betrachtet heißt das, man kann sie so übereinander legen, dass an keiner Stelle etwas überlappt.
Gib an, wieviele Dreiecke in der Figur zu dem jeweils vorgegebenen kongruent sind (das vorgegebene Dreieck selbst NICHT mitgezählt).
Zwischenschritte aktivieren
Das Viereck ABCD ist ein achsensymmetrisches Trapez.
Zum Dreieck AED ist/sind
weitere(s) Dreieck(e) kongruent.
Zum Dreieck EGD ist/sind
weitere(s) Dreieck(e) kongruent.
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Stoff zum Thema
Was bedeutet es, wenn zwei Figuren als kongruent bezeichnet werden?
#183
Zwei Figuren heißen
kongruent
, wenn sie deckungsgleich sind. Praktisch betrachtet heißt das, man kann sie so übereinander legen, dass an keiner Stelle etwas überlappt.
Welche Minimalangaben legen ein Dreieck eindeutig fest?
#180
Ein Dreieck wird eindeutig festgelegt durch die Angabe (vergleiche mit den Kongruenzsätzen)
aller drei Seitenlängen
einer Seitenlänge und zweier Winkel
zweier Seitenlängen sowie dem Zwischenwinkel
zweier Seitenlängen und dem Winkel, der der größeren Seite gegenüberliegt
Beachte bei allen Angaben zu Dreiecken: die Innenwinkelsumme muss 180° betragen und die Dreiecksungleichung erfüllt sein, d.h. die Summe zweier Seitenlängen in einem Dreieck muss stets größer sein als die dritte.
Wie bestimmt man die Entfernung von einem Punkt zu einer Geraden und die Lage von Punkten mit gleicher oder bestimmter Entfernung zu geometrischen Objekten?
#824
Die kürzeste Entfernung eines Punktes P zu …
… einem anderen Punkt Q misst man entlang der Strecke von P nach Q.
… einer Geraden g misst man entlang des Lots zu g durch P.
Punkte mit gleicher Entfernung zu …
… zwei Punkten A und B liegen auf der Mittelsenkrechten von A und B.
… zwei sich schneidenden Geraden g und h liegen auf den beiden Winkelhalbierenden von g und h.
Punkte mit einem bestimmten Abstand d zu …
… einem Punkt A liegen auf dem Kreis um A mit Radius d.
… einer Geraden g liegen auf den beiden Parallelen zu g im Abstand d.
Titel
×
...
Schließen
Speichern
Abbrechen