Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
    Wenn von einem Punkt auf dem Schaubild nur die x-Koordinate bekannt ist, erhält man die y-Koordinate, indem man die x-Koordinate in den Funktionsterm einsetzt und den Wert des Funktionsterms berechnet. Das Ergebnis ist die y-Koordinate.

    Wenn von einem Punkt auf dem Schaubild nur die y-Koordinate bekannt ist, erhält man die x-Koordinate, indem man den Funktionsterm gleich der y-Koordinate setzt und aus der entstehenden Gleichung x bestimmt. Das Ergebnis ist die x-Koordinate.

Die Punkte P, Q, R und S liegen auf dem Graphen der gegebenen Potenzfunktion. Berechne jeweils die fehlende Koordinate.

Potenzfunktion:
 
y
=
3x
3
Punkte:
P
 
1
 
|
Q
 
2
 
|
R
 
 
|
 
0
S
 
 
|
 
3
  • Nebenrechung

Zugriff ab Level 2 nur mit Benutzerkonto

Erstelle jetzt ein kostenloses Benutzerkonto. Damit hast du bei all unseren Aufgaben kostenlos Zugriff auf den 1. und 2. Level.
Benutzerkonto erstellen

Tipp

Wenn du Mathegym ohne Vollzugang weiter erkunden möchtest, kannst du entweder einen anderen Aufgabentyp wählen. Oder ein paar ausgewählte Schritt-für-Schritt-Aufgaben lösen, die wir für dich zusammengestellt haben.

Tipp: Wähle deinen Lehrplan, und wir zeigen dir genau die Aufgaben an, die für deine Schule vorgesehen sind.

Bei einer Potenzfunktion mit der Funktionsgleichung y=axn entscheidet die Hochzahl n zusammen mit dem Vorfaktor a, von wo der Graph kommt und wohin er geht:
  • n ungerade, a positiv (z.B. 5x³): Graph verläuft von links unten nach rechts oben.
  • n ungerade, a negativ (z.B. -2x): Graph verläuft von links oben nach rechts unten.
  • n gerade, a positiv (z.B. ½x²): Graph verläuft von links oben nach rechts oben.
  • n gerade, a negativ (z.B. -x²): Graph verläuft von links unten nach rechts unten.
Beispiel
Wie verläuft der Graph?
y
=
4x
7
Potenzfunktionen sind Funktionen der Form:
y = axn

Spezialfälle:
  • n = 0 (konstante Funktion): y = a, Graph: waagerechte Gerade
  • n = 1 (lineare Funktion): y = ax, Graph: Ursprungsgerade mit Steigung a
  • n = 2 (quadratische Funktion): y = ax2, Graph: gestauchte / gestreckte Parabel mit Scheitel S ( 0 | 0 )
Die Graphen von Potenzfunktionen haben charakteristische Eigenschaften, die oft davon abhängen, ob die Hochzahl n gerade oder ungerade ist.
  • Wertemenge:
    n gerade: keine negativen Zahlen
    n ungerade: alle reellen Zahlen

  • Symmetrie:
    n gerade: Achsensymmetrie zur y-Achse
    n ungerade: Punktsymmetrie zum Ursprung

  • Vorfaktor a
    Der Wert des Parameters a ist der Funktionswert an der Stelle x = 1.
    a>0: Streckung / Stauchung in y-Richtung
    a<0: zusätzliche Spiegelung an der x-Achse
Beispiel
Gib die zugehörige Funktionsgleichung an
graphik
y
=
?x
?
Wenn von einem Punkt auf dem Schaubild nur die x-Koordinate bekannt ist, erhält man die y-Koordinate, indem man die x-Koordinate in den Funktionsterm einsetzt und den Wert des Funktionsterms berechnet. Das Ergebnis ist die y-Koordinate.

Wenn von einem Punkt auf dem Schaubild nur die y-Koordinate bekannt ist, erhält man die x-Koordinate, indem man den Funktionsterm gleich der y-Koordinate setzt und aus der entstehenden Gleichung x bestimmt. Das Ergebnis ist die x-Koordinate.