Hilfe
  • Um Summen oder Differenzen von Potenzen (mit x im Exponent) zu vereinfachen, kann man versuchen, mit Hilfe der Potenzregeln gleiche Potenzen herzustellen.
TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Löse die Exponentialgleichung mit Hilfe der Potenzgesetze. Ergebnis(se) falls erforderlich auf die 4. Dezimalstelle gerundet eingeben!

  • 3
    x
    +
    1
    =
    5
    ·
    3
    x
    162
    x
    =
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Exponentialgleichung und Logarithmus
Lernvideo

Exponentialgleichung und Logarithmus

Kanal: Mathegym
Logarithmus Rechenregeln
Lernvideo

Logarithmus Rechenregeln

Kanal: Mathegym

Was bedeutet log_b a und wie berechnet man es?
#353
Um  logb a ohne Taschenrechner zu ermitteln, muss man fragen: "b hoch wieviel ist a?"

Beispiel: log3 9 = 2, weil 32 = 9

Was ist eine Exponentialgleichung und wie wird sie gelöst?
#358
Die Exponentialgleichung (Exponent gesucht!)   bx = a    besitzt die Lösung   x = logb a.

Gesprochen: "Logarithmus von a zur Basis b"

Wie berechnet man log_b a mit einem Taschenrechner, der nur eine 'log'-Taste hat?
#356
Um logb a zu berechnen, gib in den Taschenrechner ein:

log a : log b

Wie löst man die Gleichung log_b a = c, wenn a oder b gesucht sind?
#851
Sind in der Gleichung

logb a = c

a oder b gesucht, so übersetzt man sie in die Exponentialgleichung

bc = a

und löst im Fall "b gesucht" noch nach b auf.
Wie lassen sich mehrere Logarithmen mit gleicher Basis zu einem Logarithmus zusammenfassen?
#354
Summen und Differenzen von Logarithmen mit gleicher Basis lassen sich zusammenfassen:

logb x + logb y = logb (x · y)

logb x − logb y = logb (x : y)

Achtung: Für Produkte und Quotienten zweier Logarithmen gibt es keine entsprechende Formel!
Wie kann man log_b(a) ohne Taschenrechner bestimmen, wenn Basis und Argument als Potenzen derselben Basis darstellbar sind?
#359
Lassen sich Basis und Argument des Logarithmus als Potenz derselben Basis schreiben, so kann man den Logrithmuswert ohne Taschenrechner bestimmen.
Beispiel
log
4
 
1
8
=
?
Wie kann man einen Logarithmus umformen, wenn das Argument eine Potenz ist?
#355
logb ar = r · logb a

Die Regel ist viele Schülern unter "Lasso-Regel" geläufig, da man den Exponenten sozusagen mit einem Lasso einfängt und vor das "r" stellt.

Wie kann ein Logarithmus umgeformt werden, wenn die Basis eine Potenz ist?
#852
Ist die Basis des Logarithmus eine Potenz br, so lässt sich der Logarithmus wie folgt umformen:

log br (a) = log b (a1/r)

Beispiel
Vereinfache.
log
1/a
 
b
2
log
a
2
 
1
b
=
?
Wie lässt sich eine Exponentialgleichung der Form b^{T_1(x)} = b^{T_2(x)} lösen?
#368
Liegt die Exponentialgleichung in der Form

bT1(x) = bT2(x)    [ T1(x) und T2(x) sind x-Terme ]

vor, so kann x auch ohne Logarithmus gelöst werden. Setze dazu einfach gleich:

T1(x) = T2(x)

Wie löst man eine Exponentialgleichung, wenn nur eine Potenz mit x vorkommt?
#997
Exponentialgleichungen, in denen nur eine Potenz (und sonst kein weiteres x) vorkommt, lassen sich in die Form

aT(x)=b

bringen [mit T(x) ist ein x-Term wie z.B. x+3 gemeint]. Sofern b>0, kann man anschließend auf beiden Seiten den Logarithmus zur Basis a anwenden, womit man die Gleichung

T(x)=logab

erhält, die nach x aufgelöst werden kann.
Beispiel
Löse die Gleichung.
12 000
·
1,06
x
3
=
10
5
Beispiel
Löse die Gleichung:
4
x
1
:
9
=
3
2
x
·
2
x
Wie kann man Summen oder Differenzen von Potenzen mit x im Exponenten vereinfachen?
#998
Um Summen oder Differenzen von Potenzen (mit x im Exponent) zu vereinfachen, kann man versuchen, mit Hilfe der Potenzregeln gleiche Potenzen herzustellen.
Beispiel
Löse die Exponentialgleichung.
4
x
+
1
=
4
x
1
2
+
7

Mathe-Aufgaben passend zu deinem Lehrplan

Aufgaben für deinen Lehrplan
Wir zeigen dir exakt die Mathe-Übungen, die für deinen Lehrplan bzw. Bundesland vorgesehen sind. Wähle dazu bitte deinen Lehrplan.
Lehrplan wählen
Diese Aufgabentypen erwarten dich in den weiteren Übungslevel:
1. Level5 Aufgaben
Logarithmus - Exponentialgleichung und Rechenregeln
2. Level8 Aufgaben
Logarithmus - Exponentialgleichung und Rechenregeln
3. Level5 Aufgaben
Logarithmus - Exponentialgleichung und Rechenregeln
4. Level5 Aufgaben
Logarithmus - Exponentialgleichung und Rechenregeln
5. Level3 Aufgaben
Logarithmus - Exponentialgleichung und Rechenregeln
6. Level3 Aufgaben
Logarithmus - Exponentialgleichung und Rechenregeln
7. Level3 Aufgaben
Logarithmus - Exponentialgleichung und Rechenregeln
8. Level4 Aufgaben
Logarithmus - Exponentialgleichung und Rechenregeln
9. Level4 Aufgaben
Logarithmus - Exponentialgleichung und Rechenregeln
10. Level3 Aufgaben
Logarithmus - Exponentialgleichung und Rechenregeln
11. Level3 Aufgaben
Logarithmus - Exponentialgleichung und Rechenregeln
12. Level3 Aufgaben
Logarithmus - Exponentialgleichung und Rechenregeln
13. Level5 Aufgaben
Logarithmus - Exponentialgleichung und Rechenregeln
14. Level4 Aufgaben
Logarithmus - Exponentialgleichung und Rechenregeln
15. Level6 Aufgaben
Logarithmus - Exponentialgleichung und Rechenregeln
16. Level4 Aufgaben
Logarithmus - Exponentialgleichung und Rechenregeln

Dies ist nur eine kleine Auswahl. In unserem Aufgabenbereich findest du viele weitere Mathe-Übungen, die zu deiner Schule und deinem Lehrplan passen!

Zum Aufgabenbereich