Zwei Brüche haben folgende Nenner. Finde ihren kleinsten gemeinsamen Nenner.

  • Nenner: 4; 5
    kleinster gemeinsamer Nenner:
     
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie addiert man Brüche mit gleichem Nenner?
#33
Brüche mit gleichem Nenner werden addiert, indem man ihre Zähler addiert und den Nenner beibehält.
Beispiel
2
3
+
5
3
=
2
+
5
3
=
7
3
4
5
1
5
=
4
1
5
=
3
5
Was ist das kleinste gemeinsame Vielfache (kgV) und wie wird es berechnet?
#465

Unter dem kleinsten gemeinsamen Vielfachen (kgV) zweier natürlicher Zahlen a und b versteht man die kleinste natürliche Zahl, die sowohl ein Vielfaches von a als auch ein Vielfaches von b ist.

Einfaches Beispiel: die Zahlen 4 und 6 haben 12, 24, 36 usw. als gemeinsame Vielfache. Von diesen ist 12 die kleinste, also ist 12 das kgV von 4 und 6.

Das gkV kann mit unterschiedlichen Methoden bestimmt werden. Bei einfachen Zahlen kommt man oft schnell drauf, indem man von beiden Zahlen die ersten Vielfachen bildet und vergleicht. Ansonsten steht auch die Methode der Primfaktorenzerlegung zur Verfügung.

Beispiel
kgV(12; 15)=?
Wie addiert und subtrahiert man gemischte Zahlen?
#35
  • gemischte Zahl + gemischte Zahl = (ganze Zahl + ganze Zahl) + (Bruch + Bruch)
  • Gemischte Zahl − Gemischte Zahl = (ganze Zahl − ganze Zahl) + (Bruch − Bruch)
Zwischen den Klammern steht immer ein Plus !
Beispiel
6
3
4
2
3
5
=
?
Wie subtrahiert man gemischte Zahlen, wenn der abzuziehende Bruch größer ist als der Bruch im Minuend?
#37
Bei der Subtraktion gemischter Zahlen kann es hilfreich sein, den Minuend (Zahl vor dem Minus) auf folgende Weise umzuformen: Von der ganzen Zahl wird ein Ganzes abgezogen, dafür der Zähler des Bruches um den Betrag des Nenners erhöht.
Beispiel
3
1
5
4
5
=
?
Wie kann man das kleinste gemeinsame Vielfache (kgV) schnell bestimmen?
#670
Das kleinste gemeinsame Vielfache zweier Zahlen erhält man oft am schnellsten, indem man sich die Vielfachenreihe der größeren Zahl ansieht.Um zum Beispiel das kleinste gemeinsame Vielfache von 15 und 25 zu ermitteln, betrachtet man der Reihe nach die Vielfachen von 25, also 25, 50, 75... Bei 75 kann man abbrechen, weil 75 auch durch 15 teilbar ist (25 und 50 nicht). Also lautet das Ergebnis 75.Noch schneller geht es, wenn beide Zahlen Primzahlen (z.B. 11 und 5) oder teilerfremd sind (z.B. 8 und 9): In diesem Fall muss man die beiden Zahlen nur multiplizieren.
Wie kann jede ganze Zahl als Bruch dargestellt werden?
#18
Jede natürliche Zahl n kann als Bruch n/1 (Zähler=n, Nenner=1) geschrieben werden.
Beispiel
?
+
7
5
=
9
Was muss man beachten, wenn man Brüche addiert oder subtrahiert?
#34
Brüche können nur dann addiert oder subtrahiert werden, wenn sie gleichnamig sind (d.h. Nenner gleich). Ist das nicht der Fall, muss man sie durch Erweitern/Kürzen gleichnamig machen.
Beispiel
Berechne:
2
3
+
1
7
=
?
Beispiel
7
2
15
2
5
18
=
?
Wie findet man den kleinsten gemeinsamen Nenner zweier Brüche?
#36
Die Suche nach einem möglichst kleinen, gemeinsamen Nenner ist gleichbedeutend mit der Suche nach dem kleinsten gemeinsamen Vielfachen (kgV). Dabei gehst du bei größeren Zahlen am besten so vor:
  1. Zerlege beide Nenner vollständig in Primfaktoren.
  2. Stelle nun das kgV aus den jeweils größten Potenzen der auftretenden Primzahlen zusammen.
Beispiel
Es liegen zwei gekürzte Brüche vor, der eine mit Nenner 735, der andere mit Nenner 1260. Gesucht ist der kleinste gemeinsame Nenner.
Beispiel
Welcher Anteil ist gefärbt?
graphik
Wie findet man die Erweiterungsfaktoren für Brüche nach Bestimmung des kleinsten gemeinsamen Nenners?
#38
Wenn du den gemeinsamen Nenner gefunden hast, musst du nur noch richtig erweitern. Den jeweiligen Erweiterungsfaktor findest du am einfachsten, wenn du die Primfaktorzerlegung des ursprünglichen Nenners mit der Primfaktorzerlegung des gemeinsamen Nenners vergleichst.
Beispiel
Berechne.
25
84
25
126
=
?
Ermittle dazu zunächst den kleinsten gemeinsamen Nenner und erweitere dann beide Brüche passend.

Mathe-Aufgaben passend zu deinem Lehrplan

Aufgaben für deinen Lehrplan
Wir zeigen dir exakt die Mathe-Übungen, die für deinen Lehrplan bzw. Bundesland vorgesehen sind. Wähle dazu bitte deinen Lehrplan.
Lehrplan wählen
Diese Aufgabentypen erwarten dich in den weiteren Übungslevel:
1. Level6 Aufgaben
Brüche - Addition und Subtraktion - nur positiv
2. Level13 Aufgaben
Brüche - Addition und Subtraktion - nur positiv
3. Level6 Aufgaben
Brüche - Addition und Subtraktion - nur positiv
4. Level10 Aufgaben
Brüche - Addition und Subtraktion - nur positiv
5. Level10 Aufgaben
Brüche - Addition und Subtraktion - nur positiv
6. Level5 Aufgaben
Brüche - Addition und Subtraktion - nur positiv
7. Level10 Aufgaben
Brüche - Addition und Subtraktion - nur positiv
8. Level8 Aufgaben
Brüche - Addition und Subtraktion - nur positiv
9. Level10 Aufgaben
Brüche - Addition und Subtraktion - nur positiv
10. Level8 Aufgaben
Brüche - Addition und Subtraktion - nur positiv
11. Level10 Aufgaben
Brüche - Addition und Subtraktion - nur positiv
12. Level10 Aufgaben
Brüche - Addition und Subtraktion - nur positiv
13. Level10 Aufgaben
Brüche - Addition und Subtraktion - nur positiv
14. Level10 Aufgaben
Brüche - Addition und Subtraktion - nur positiv

Dies ist nur eine kleine Auswahl. In unserem Aufgabenbereich findest du viele weitere Mathe-Übungen, die zu deiner Schule und deinem Lehrplan passen!

Zum Aufgabenbereich