Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
Ganzrationale Funktionen - Faktorisierung, Matheübungen
Faktorisierung durch Ausklammern, Anwendung der Mitternachtsformel, Substitution - Lehrplan G9 (5.-13. Klasse) - 39 Aufgaben in 8 Levels
Abbruch - Keine Zugriffsberechtigung
Hilfe
Für diesen Aufgabentyp steht keine spezielle Hilfe zur Verfügung.
Weitere Hilfethemen
FAQ zum Aufgabenbereich und zur Bedienung
Aufgabe
Aufgabe
1 von 6
in Level 8
Vermischte Aufgaben zum Bestimmen von Nullstellen.
Trage "!" in übrig bleibende Felder ein.
f(x)
=
4x
2
−
9x
−
2,5
x
1
=
x
2
=
Ergebnis prüfen
keine Berechtigung
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
α
β
γ
δ
ε
η
λ
μ
π
σ
φ
ω
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Lösung anzeigen
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich.
Lösung anzeigen
Abbrechen
Stoff zum Thema (+Video)
Stoff zum Thema anzeigen
Lernvideo
Faktorisierung von Polynomen (Teil 1)
Kanal: Mathegym
Was ist der Vorteil eines faktorisierten Funktionsterms?
#485
Liegt ein Funktionsterm in faktorisierter Form vor, also
f(x) = p(x) · q(x) [evtl. noch mehr Faktoren],
so erhält man alle Nullstellen von f, indem man die Nullstellen der einzelnen Faktoren bestimmt - denn ein Produkt ist Null, wenn ein Faktor Null ist.
Beispiel
f
x
=
x
4
−
3x
3
−
2x
2
·
x
+
1
3
. Ermittle alle Nullstellen.
Wie kann ein quadratischer Term faktorisiert werden?
#319
Ein quadratischer Term
(q · x² + r · x + s)
kann evtl. als Produkt von zwei linearen Termen (linear ist z.B.
x + 2
) geschrieben werden. Dies hängt von den Lösungen der entsprechenden Nullgleichung (Lösungsformel!) ab:
Zwei unterschiedliche Lösungen a und b: der Term zerfällt in
q · (x − a) · (x − b)
.
Eine Lösung a: der Term zerfällt in
q · (x − a)²
.
Keine Lösung ("Minus unter der Wurzel"): der Term ist nicht zerlegbar.
Beispiel
Zerlege, falls möglich, in Linearfaktoren:
a
−
2x
2
+
3x
+
2
b
−
3x
2
+
x
−
5
Wie funktioniert die Substitutionsmethode in der Mathematik?
#486
Beim Lösen einer Gleichung mit der Unbekannten x kann es hilfreich sein, eine
Substitution
vorzunehmen. Man ersetzt dabei einen geeigneten x-Term (z.B. x²) durch eine neue Variable, z.B. "z", so dass die Gleichung gelöst werden kann. Wenn man die Lösung(en) für z kennt, findet man die Lösungen für x leicht heraus (
Re- / Rücksubstitution
).
Beispiel
Löse die Gleichung.
x
4
−
6x
2
+
8
=
0
Titel
×
...
Schließen
Speichern
Abbrechen