Aufgaben/Videos
Preise
Hilfe
Infos
Infos für Schüler
Infos für Eltern
Infos für Lehrer & Schulen
Teilnehmende Schulen
Auszeichnungen
Erfahrungsberichte
Unser Team
Jobs
Kontakt
Registrieren
Login
Terme - Distributivgesetz - Klammern auflösen II - Matheaufgaben
Multiplikation und Division von Summen: (a+b) · (c+d)
Aufgaben
Aufgaben rechnen
Stoff
Stoff ansehen (+Video)
Hilfe
Hilfe speziell zu dieser Aufgabe
Die Beträge der einzugebenden Zahlen ergeben in der Summe 19.
Beispielaufgabe
Die Anzahl der Summanden, die sich nach dem Ausmultiplizieren mehrerer Summen ergibt, lässt sich ebenso leicht bestimmen wie die höchsten Variablenpotenzen:
Anzahl der Summanden: Nimm von jeder Klammer die Anzahl der Summanden und bilde das Produkt.
Höchste Potenz einer Variable: Nimm aus jeder Klammer die höchste Potenz dieser Variable und multipliziere diese Potenzen.
Multipliziert man den Term aus, so erhält man eine Summe (mit negativen und positiven Summanden). Wie viele Summanden ergeben sich dabei und welche höchsten Variablenpotenzen treten auf?
Zwischenschritte aktivieren
b
2
−
a
·
0,3 a
5
−
b
+
1
3
·
b
4
Summanden
;
a
;
b
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lehrplan wählen
Tipp: Wähle deinen Lehrplan, und wir zeigen dir genau die Aufgaben an, die für deine Schule vorgesehen sind.
Stoff zum Thema (+Video)
Beim Multiplizieren zweier Summen muss jeder Summand der ersten Klammer mit jedem Summanden der zweiten Klammer multipliziert werden (ergibt sich aus dem Distributivgesetz):
(a + b) · (c + d) = ac + ad + bc + bd
Beispiel 1
Multipliziere aus und vereinfache:
2
5
uv
−
2
3
·
15u
2
+
1
−
uv
Beispiel 2
Multipliziere aus und vereinfache:
a)
x
+
3
·
4
−
5x
b)
−
10
−
a
·
−
7
+
b
b)
x
2
−
1
−
2
3
a
·
3x
−
1
2
Beispiel 3
b
−
2
3
b
·
6a
·
a
−
30%
+
1
2
a
2
·
b
−
4ab
−
ab
2
Die drei Binomischen Formeln (BF) lauten:
(a + b)² = a² + 2ab + b²
(a − b)² = a² − 2ab + b²
(a + b) (a − b) = a² − b²
In dieser Richtung (links mit Klammer, rechts ohne) dienen die Formeln dazu, Klammern schneller auszumultiplizieren. Ohne Kenntnis der BF müsste man die Klammern auf herkömmlich Art ("jeder mit jedem") ausmultiplizieren.
Beispiel
Vereinfache soweit wie möglich.
2c
−
5d
2
−
c
−
5
·
3d
=
?
Verändert sich die Länge einer Seite a um den Parameter x, so unterscheidet man die beiden Fälle:
wird die Strecke a um x verlängert, so beträgt die neue Länge a + x.
wird die Strecke a um x verkürzt, so beträgt die neue Länge a − x.
Die Anzahl der Summanden, die sich nach dem Ausmultiplizieren mehrerer Summen ergibt, lässt sich ebenso leicht bestimmen wie die höchsten Variablenpotenzen:
Anzahl der Summanden: Nimm von jeder Klammer die Anzahl der Summanden und bilde das Produkt.
Höchste Potenz einer Variable: Nimm aus jeder Klammer die höchste Potenz dieser Variable und multipliziere diese Potenzen.
Beispiel
Wie viele Summanden ergeben sich nach dem Ausmultiplizieren und welche höchsten Variablenpotenzen?
x
+
2
−
y
2
·
2y
5
−
x
−
5x
2
+
1
3
·
x
+
1
·
y
3
Unterscheide zwischen
a · (b · c) = a · b · c (A-Gesetz)
a · (b + c) = a · b + a · c (D-Gesetz)
Beispiel
Vereinfache:
12,5%
·
s
:
5
−
4
+
1,8s
·
1
1
2
s
+
t
2
−
3t
·
s
:
6
·
2t
Titel
×
...
Schließen
Speichern
Abbrechen