Hilfe
  • Hilfe zum Thema
    Distributivgesetz:

    a · (b + c ) = a · b + a · c    ("Klammer ausmultiplizieren")

    (a + b ) : c = a : c + b : c

    Statt + kann man auch − einsetzen, d.h. das Distributivgesetz gilt für Summen wie auch für Differenzen, die mit einer Zahl multipliziert oder durch eine Zahl dividiert werden.

  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 10 in Level 1
  • Multipliziere aus und vereinfache.
  • 7
    ·
    23
    11d
    =
  • Checkos: 0 max.
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die Hilfe zu dieser Aufgabe an.
Stoff zum Thema (+Video)
Was besagt das Distributivgesetz in der Mathematik?
#119
Distributivgesetz:

a · (b + c ) = a · b + a · c    ("Klammer ausmultiplizieren")

(a + b ) : c = a : c + b : c

Statt + kann man auch − einsetzen, d.h. das Distributivgesetz gilt für Summen wie auch für Differenzen, die mit einer Zahl multipliziert oder durch eine Zahl dividiert werden.

Beispiel 1
Multipliziere aus und gib gekürzt an:
1
3
·
2a
+
12b
+
3c
=
?
Beispiel 2
Multipliziere aus und gib gekürzt an:
2
9
·
3
5
6c
=
?
Beispiel 3
Multipliziere aus und gib gekürzt an:
5
3
 
ab
1
3
 
a
2
3b
·
6
5
=
?
Wie löst man eine Klammer auf, die addiert oder subtrahiert wird?
#412
Gehe beim Auflösen einer Klammer, die addiert oder subtrahiert wird, am besten in folgenden Schritten vor:
  1. Ist die erste Zahl in der Klammer positiv, so schreibe ein positives Vorzeichen davor.
  2. Löse jetzt die Klammer auf, d.h. lass die Klammer sowie das Plus- oder Minuszeichen davor verschwinden.
  3. Bei einer Plus-Klammer kann der usprüngliche Klammerinhalt einfach abgeschrieben werden; bei einer Minusklammer müssen alle Plus- und Minuszeichen umgedreht werden.
Beispiel
Plusklammer:
124
+
23
124
=
 
     [23 mit Vorzeichen versehen]
124
+
+
23
124
=
 
     [Klammer auflösen und Inhalt abschreiben]
124
 
+
23
124
=
23
- - - - - - - - - - - - - - - - -
Minusklammer
124
23
124
=
 
     [23 mit Vorzeichen versehen]
124
+
23
124
=
 
     [Klammer auflösen und Inhalt mit umgedrehten Vor-/Rechenzeichen abschreiben]
124
 
23
+
124
=
225
Wie kann man komplexe Terme vereinfachen?
#421
Bei komplexeren Termen hilft meist die folgende Strategie weiter:
  1. Klammern auflösen/ausmultiplizieren
  2. gleichartige Terme durch Addieren/Subtrahieren zusammenfassen
Beispiel
Vereinfache:
3
2
9
 
v
2
3
1
3
·
6
v
·
2

Mathe-Aufgaben passend zu deinem Lehrplan

Aufgaben für deinen Lehrplan
Wir zeigen dir exakt die Mathe-Übungen, die für deinen Lehrplan bzw. Bundesland vorgesehen sind. Wähle dazu bitte deinen Lehrplan.
Lehrplan wählen
Diese Aufgabentypen erwarten dich in den weiteren Übungslevel:
1. Level10 Aufgaben
Termumformung (a+b)·c
2. Level5 Aufgaben
Termumformung (a+b)·c
3. Level5 Aufgaben
Termumformung (a+b)·c
4. Level5 Aufgaben
Termumformung (a+b)·c
5. Level5 Aufgaben
Termumformung (a+b)·c
6. Level5 Aufgaben
Termumformung (a+b)·c
7. Level5 Aufgaben
Termumformung (a+b)·c
8. Level5 Aufgaben
Termumformung (a+b)·c
9. Level6 Aufgaben
Termumformung (a+b)·c
10. Level6 Aufgaben
Termumformung (a+b)·c
11. Level5 Aufgaben
Termumformung (a+b)·c
12. Level3 Aufgaben
Termumformung (a+b)·c
13. Level5 Aufgaben
Termumformung (a+b)·c

Dies ist nur eine kleine Auswahl. In unserem Aufgabenbereich findest du viele weitere Mathe-Übungen, die zu deiner Schule und deinem Lehrplan passen!

Zum Aufgabenbereich