Ein Produkt von Wurzeln lässt sich als Produkt unter einer Wurzel schreiben und umgekehrt. Sofern weder \(a\) noch \(b\) negativ sind, gilt also
Ein Quotient von Wurzeln lässt sich als Quotient unter einer Wurzel schreiben und umgekehrt. Sofern weder \(a\) noch \(b\) negativ sind, gilt also
Nach dem Distributivgesetz können gleiche Wurzeln (bzw. Vielfache davon) addiert und subtrahiert werden:
Beachte dabei: \( \sqrt{a} + \sqrt{b} \neq \sqrt{a + b} \)
Oft kann man teilweise die Wurzel ziehen. Sofern \(a\) nicht negativ ist, kann man den Faktor \(a^2\) unabhängig vom Faktor \(b\) radizieren:
a · (b + c ) = a · b + a · c ("Klammer ausmultiplizieren")
(a + b ) : c = a : c + b : c
Statt + kann man auch − einsetzen, d.h. das Distributivgesetz gilt für Summen wie auch für Differenzen, die mit einer Zahl multipliziert oder durch eine Zahl dividiert werden.
Ein Produkt von Wurzeln lässt sich als Produkt unter einer Wurzel schreiben und umgekehrt. Sofern weder \(a\) noch \(b\) negativ sind, gilt also \[ \sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b} \]
Unter anderem ermöglicht diese Regel, Wurzeln teilweise zu radizieren. Sofern \(a\) nicht negativ ist, kann man den Faktor \(a^2\) unabhängig vom Faktor \(b\) radizieren:
√(a²) = | a |
Der Betragstrich ist nicht nötig, wenn a < 0 ausgeschlossen werden kann. Ist hingegen bekannt, dass a negativ ist, kann man statt des Betrags auch konkret schreiben
√(a²) = −a
Dies ist nur eine kleine Auswahl. In unserem Aufgabenbereich findest du viele weitere Mathe-Übungen, die zu deiner Schule und deinem Lehrplan passen!