Hilfe
  • Allgemeine Hilfe zu diesem Level

    Die Graphen zweier quadratischer Funktionen (Parabeln) oder einer quadratischen und einer linearer Funktion (Parabel und Gerade) f und g können sich zweimal schneiden, einmal berühren oder auch keine gemeinsamen Punkte aufweisen. Um das herauszufinden, setzt man beide Funktionsterme gleich, also f(x) = g(x), und bringt die Gleichung in die Nullform ax² + bx + c = 0. Mit Hilfe der Diskriminante D = b² − 4ac bekommt man die Antwort:

    • D > 0 ⇔ zwei Schnittstellen
    • D = 0 ⇔ eine Berührstelle
    • D < 0 ⇔ weder Schnitt- noch Berührstelle, also keine gemeinsamen Punkte

Bestimme mit Hilfe der Diskriminante, ob sich beide Graphen schneiden, berühren oder ob es keine gemeinsamen Punkte gibt.

f
 
x
=
x
2
2x
g
 
x
=
3x
6
schneiden
berühren
keine gemeinsamen Punkte
  • Nebenrechnung

Mathe-Aufgaben passend zu deinem Lehrplan

Mit unserer Lernsoftware kannst du gezielt die Mathe-Aufgaben üben, die für deine Schule bzw. deinen Lehrplan vorgesehen sind. Wähle deine Schulart und Bundesland und du bekommst Zugriff auf Tausende Online-Übungen zum selber rechnen und lernen.
Lehrplan wählen