Hilfe
  • Eine quadratischen Funktion kann maximal zwei Nullstellen haben. Deren Bestimmung läuft auf das Lösen einer quadratischen Gleichung hinaus. Je nachdem, in welcher Form der Funktionsterm gegeben ist, wendet man die Lösungsformel (Mitternachtsformel oder p-q-Formel) an oder wählt ein leichteres Verfahren:
    • Scheitelpunktform: forme die Gleichung um in (x+...)2=... und radiziere dann auf beiden Seiten
    • Nullstellenform: die Nullstellen können ohne weitere Rechnung abgelesen werden

Bestimme die Schnittpunkte der Parabel mit den Koordinatenachsen.

  • p: y
    =
    1
    3
    ·
    x
    3
    2
    2
    S
    y
     
     
    |
     
    S
    x
    1
     
     
    |
     
    S
    x
    2
     
    +
     
    |
     
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie bestimmt man Schnitt- oder Berührpunkte zwischen einer Parabel und einer Geraden oder zwischen zwei Parabeln?
#784

Die Graphen zweier quadratischer Funktionen (Parabeln) oder einer quadratischen und einer linearer Funktion (Parabel und Gerade) f und g können sich zweimal schneiden, einmal berühren oder auch keine gemeinsamen Punkte aufweisen. Um das herauszufinden, setzt man beide Funktionsterme gleich, also f(x) = g(x), und bringt die Gleichung in die Normalform x² + px + q = 0. Mit Hilfe der Diskriminante D = (p/2)² − q bekommt man die Antwort:

  • D > 0 ⇔ zwei Schnittstellen
  • D = 0 ⇔ eine Berührstelle
  • D < 0 ⇔ weder Schnitt- noch Berührstelle, also keine gemeinsamen Punkte
Beispiel 1
Gegeben sind die Parabel r und die Gerade g mit folgenden Gleichungen:
r: y
=
1
3
 
x
2
5x
+
7
g: y
=
5
6
 
x
2
a) Ermittle rechnerisch, ob sich beide Graphen schneiden, berühren oder ob Sie keine gemeinsamen Punkte aufweisen.
b) Falls es gemeinsame Punkte gibt: ermittle diese!
Beispiel 2
- - - a) - - -
Gegeben sind eine Parabelschar 
p
a
 und eine Gerade g durch
p
a
 
x
=
ax
2
2x
+
1
g
 
x
=
3x
4
Gib jeweils den Wert oder die Werte für a an, bei dem sich 
p
a
 und g schneiden/berühren/weder schneiden noch berühren.

- - - b) - - -
Gegeben sind eine Parabel p und eine Geradenschar 
g
m
 durch
p
x
=
1
2
 
x
1
2
+
2
g
m
 
x
=
mx
2
Bestimme m so, dass sich Parabel und Gerade berühren.
Wie kann man jede Gleichung graphisch lösen, wenn eine Lösung existiert?
#431
Eine Gleichung kann graphisch gelöst werden, indem man beide Seiten der Gleichung als Funktionsterm betrachtet und die zugehörigen Graphen zeichnet. Die Stellen, wo sie sich schneiden bzw. berühren, sind die Lösungen der Gleichung. Keine gemeinsamen Punkte dagegen heißt keine Lösung.
Beispiel
Löse graphisch:
0,5x
2
1
=
1,5x
2
Wie viele Nullstellen kann eine quadratische Funktion haben und wie bestimmt man diese?
#993
Eine quadratischen Funktion kann maximal zwei Nullstellen haben. Deren Bestimmung läuft auf das Lösen einer quadratischen Gleichung hinaus. Je nachdem, in welcher Form der Funktionsterm gegeben ist, wendet man die Lösungsformel (Mitternachtsformel oder p-q-Formel) an oder wählt ein leichteres Verfahren:
  • Scheitelpunktform: forme die Gleichung um in (x+...)2=... und radiziere dann auf beiden Seiten
  • Nullstellenform: die Nullstellen können ohne weitere Rechnung abgelesen werden
Wie interpretiert man graphisch die Gleichungen f(x) = h(x) und f(x) = 0, und was bedeutet dies bei quadratischen Gleichungen?
#244

Eine Lösung der Gleichung f(x) = h(x) kann als Schnitt- oder Berührstelle der beiden Graphen Gf und Gh interpretiert werden. Eine Lösung der Gleichung f(x) = 0 kann als Schnitt- oder Berührstelle von Gf mit der x-Achse interpretiert werden.

Sofern die Gleichung quadratisch ist, kann man aus dem Vorzeichen der Diskriminante D auf die Anzahl der gemeinsamen Punkte schließen und umgekehrt:

  • D > 0 ⇔ zwei Schnittstellen
  • D = 0 ⇔ eine Berührstelle
  • D < 0 ⇔ weder Schnitt- noch Berührstelle, also keine gemeinsamen Punkte
Wie bestimmt man die Schnitt- und Berührpunkte zweier Graphen und welcher Spezialfall ist dabei zu beachten?
#238
Die Schnitt- und Berührpunkte (gemeinsame Punkte) zweier Graphen Gf und Gg ermittelt man durch Gleichsetzen ihrer Funktionsterme, also f(x) = g(x). Setze die Lösung der Gleichung in f(x) oder g(x) ein, um den zugehörigen y-Wert zu ermitteln.

Spezialfall f(x) = 0: Hier geht es um die gemeinsamen Punkte von Gf mit der x-Achse.

Beispiel
Bestimme die Schnittpunkte der beiden Parabeln p und q mit folgenden Gleichungen:
p
 
x
=
3
4
 
x
2
+
2x
10
q
 
x
=
1
4
 
x
2
+
1,5x
4
.

Mathe-Aufgaben passend zu deinem Lehrplan

Aufgaben für deinen Lehrplan
Wir zeigen dir exakt die Mathe-Übungen, die für deinen Lehrplan bzw. Bundesland vorgesehen sind. Wähle dazu bitte deinen Lehrplan.
Lehrplan wählen
Diese Aufgabentypen erwarten dich in den weiteren Übungslevel:
1. Level5 Aufgaben
Quadratische Gleichungen - Schnittprobleme
2. Level3 Aufgaben
Quadratische Gleichungen - Schnittprobleme
3. Level3 Aufgaben
Quadratische Gleichungen - Schnittprobleme
4. Level3 Aufgaben
Quadratische Gleichungen - Schnittprobleme
5. Level6 Aufgaben
Quadratische Gleichungen - Schnittprobleme
6. Level3 Aufgaben
Quadratische Gleichungen - Schnittprobleme
7. Level5 Aufgaben
Quadratische Gleichungen - Schnittprobleme
8. Level3 Aufgaben
Quadratische Gleichungen - Schnittprobleme
9. Level3 Aufgaben
Quadratische Gleichungen - Schnittprobleme
10. Level3 Aufgaben
Quadratische Gleichungen - Schnittprobleme
11. Level3 Aufgaben
Quadratische Gleichungen - Schnittprobleme

Dies ist nur eine kleine Auswahl. In unserem Aufgabenbereich findest du viele weitere Mathe-Übungen, die zu deiner Schule und deinem Lehrplan passen!

Zum Aufgabenbereich