Hilfe
  • Allgemeine Hilfe zu diesem Level

    Stochastische Matrizen

    Stochastische Prozesse lassen sich sehr übersichtlich in Matrix-Schreibweise darstellen. Dazu werden die Zustandsverteilungen zu Vektoren zusammengefasst. Die Übergangswahrscheinlichkeiten finden sich in den Koeffizienten der Berechnungsvorschriften wieder und können übersichtlich in der Übergangsmatrix U dargestellt werden.

    Die Zustandsverteilung nach Schritt k+1 kann mittels einer Matrix-Multiplikation aus der Übergangsmatrix U und der Zustandsverteilung nach Schritt k berechnet werden.

    Eine Übergangsmatrix U zu einem vollständigen Prozessdiagramm nennt man auch stochastische Matrix und sie erfüllt folgende Eigenschaften:

    • U ist quadratisch (gleich viele Zeilen wie Spalten).
    • In der m-ten Spalte stehen die Übergangswahrscheinlichkeiten, mit denen man VOM m-ten Zustand aus die übrigen Zustände erreicht.
    • In der n-ten Zeile stehen die Übergangswahrscheinlichkeiten, mit denen man ZUM n-ten Zustand gelangt.
    • Summe der Spalteneinträge von U ist 1.

    Werden im Prozessdiagramm NICHT ALLE möglichen Zustände berücksichtigt, so wird die Übergangsmatrix zum beschriebenen stochastischen Prozess auch keine stochastische Matrix sein.

Ergänze die Matrix zu einer stochastischen Matrix.

U
=
0,4
0,4
 
 
 
 
0,8
0,2
 
 
 
 
 
1
  • Nebenrechnung

Mathe-Aufgaben passend zu deinem Lehrplan

Mit unserer Lernsoftware kannst du gezielt die Mathe-Aufgaben üben, die für deine Schule bzw. deinen Lehrplan vorgesehen sind. Wähle deine Schulart und Bundesland und du bekommst Zugriff auf Tausende Online-Übungen zum selber rechnen und lernen.
Lehrplan wählen