Hilfe
  • Allgemeine Hilfe zu diesem Level
    Achte darauf, dass beim Potenzieren eines Produkts (in der Klammer) jeder Faktor zu potenzieren ist!
  • Beispiel
    Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
  • Hilfe zum Thema
    Wird ein Produkt in Klammern potenziert, so ist beim Auflösen der Klammer darauf zu achten, dass jeder Faktor zu potenzieren ist (drittes Potenzgesetz rückwärts).
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 6 in Level 4
  • Vereinfache. Brüche sind in der Form a/b und Variablen-Potenzen in der Form x^n anzugeben.
  • 2
    5
     
    x
    3
    2
    =
  • keine Berechtigung
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die Beispiel-Aufgabe zu diesem Aufgabentyp an.
Stoff zum Thema (+Video)
Wie kann ein Term wie a · a³ : a² vereinfacht geschrieben werden?
#117
Ein Produkt von Variablen(potenzen) mit derselben Variablen lässt sich zu einer Potenz zusammenfassen.
Beispiel 1
Fasse zusammen:
a
·
a
2
·
a
3
3
=
Beispiel 2
Schreibe als Summe von Variablenpotenzen mit passendem Vorfaktor:
5
·
x
·
x
·
x
y
=
?
3
·
c
a
·
a
·
a
·
a
·
a
+
b
·
b
:
2
=
?
Beispiel 3
Fasse zusammen:
x
2
y
3
·
x
3
·
y
2
Wie multipliziert man zwei Terme wie 3ab und 5bc²?
#877
Bei der Multiplikation von Termen der Art "Zahl mal Variablen(-Potenzen)" kann man die Koeffizienten (Zahlen vor den Variablen) multiplizieren und die Variablen(-Potenzen) jeweils zu einer Potenz zusammenfassen. Normalerweise sortiert man die Variablen in alphabetischer Reihenfolge.
Beispiel
Vereinfache soweit wie möglich:
a) 
2a
·
5ab
b) 
2a
2
·
1
4
 
ab
3
c) 
3x
2
 
y
2
·
xy
3
:
6
Wie löst man eine potenzierte Klammer auf, wenn in der Klammer ein Produkt steht?
#1204
Wird ein Produkt in Klammern potenziert, so ist beim Auflösen der Klammer darauf zu achten, dass jeder Faktor zu potenzieren ist (drittes Potenzgesetz rückwärts).
Beispiel
2
3
 
a
2
 
b
3
=
?
Was sind die fünf grundlegenden Potenzgesetze?
#539
Potenzgesetze:
  1. Potenzen mit gleicher Basis werden multipliziert, indem man die Exponenten addiert und die Basis beibehält.
    ap · aq = ap + q

  2. Potenzen mit gleicher Basis werden dividiert, indem man die Exponenten subtrahiert und die Basis beibehält.
    ap : aq = ap − q

  3. Potenzen mit gleichen Exponenten werden multipliziert, indem man die Basen multipliziert und den Exponenten beibehält.
    aq · bq = (a · b)q

  4. Potenzen mit gleichen Exponenten werden dividiert, indem man die Basen dividiert und den Exponenten beibehält.
    aq : bq = (a : b)q

  5. Potenzen werden potenziert, indem man die Exponenten multipliziert.
    (ap)q = ap·q
Beispiel
Bei einem Rechteck wird die eine Seite um ein Drittel verlängert, die andere um ein Drittel verkürzt. Wie verändert sich dabei die Fläche? 

Mathe-Aufgaben passend zu deinem Lehrplan

Aufgaben für deinen Lehrplan
Wir zeigen dir exakt die Mathe-Übungen, die für deinen Lehrplan bzw. Bundesland vorgesehen sind. Wähle dazu bitte deinen Lehrplan.
Lehrplan wählen
Diese Aufgabentypen erwarten dich in den weiteren Übungslevel:
1. Level5 Aufgaben
Termumformung - Produkte und Potenzen
2. Level10 Aufgaben
Termumformung - Produkte und Potenzen
3. Level5 Aufgaben
Termumformung - Produkte und Potenzen
4. Level6 Aufgaben
Termumformung - Produkte und Potenzen
5. Level6 Aufgaben
Termumformung - Produkte und Potenzen
6. Level5 Aufgaben
Termumformung - Produkte und Potenzen
7. Level6 Aufgaben
Termumformung - Produkte und Potenzen
8. Level5 Aufgaben
Termumformung - Produkte und Potenzen

Dies ist nur eine kleine Auswahl. In unserem Aufgabenbereich findest du viele weitere Mathe-Übungen, die zu deiner Schule und deinem Lehrplan passen!

Zum Aufgabenbereich